

Werk

Label: Article **Jahr:** 1976

PURL: https://resolver.sub.uni-goettingen.de/purl?31311157X_0101 | log97

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

SETS OF σ -POROSITY AND SETS OF σ -POROSITY (q)

LUDĚK ZAJÍČEK, Praha (Received July 11, 1975)

1. INTRODUCTION

The notion of a set of σ -porosity was defined by E. P. Dolženko [1]. There exists a number of theorems in the theory of cluster sets which use this notion. (See [1], [2], [3], [4], [5].) It is easy to see that any set of σ -porosity is of the first category and of measure zero. The existence of a set of the first category and of measure zero which is not of σ -porosity is claimed without a proof in [1]. In the present article we shall prove this result.

N. Yanagihara [2] defined and used the notion of a set of σ -porosity (q), $0 < q \le 1$, which coincides with the notion of a set of σ -porosity for q = 1. We shall prove that the notions of a set of σ -porosity (q) and σ -porosity (p) coincide for any p, q, 0 < p, q < 1.

The main aim of the present article is to prove the results mentioned above and some other results on the sets of σ -porosity (q) (in our notation on sets of (x^q) - σ -porosity) in Euclidean spaces.

We shall generalize the notion of a set of σ -porosity (q) and we shall formulate some results in a general metric space in order to clarify the proofs.

2. DEFINITIONS

Let (P, ϱ) be a metric space. Then we define:

- **2.1.** The open sphere with the centre $x \in P$ and the radius r > 0 is denoted by K(x, r).
- **2.2.** Let $M \subset P$, $x \in P$, R > 0. Then we denote the supremum of the set $\{r > 0\}$; for some $z \in P$, $K(z, r) \subset K(x, R)$ and $K(z, r) \cap M = \emptyset$ by $\gamma(x, R, M)$.
- **2.3.** Let $K(x, r) \subset P$. Let f be an arbitrary function. Then we put f * K(x, r) = K(x, f(r)) if f(r) > 0.

- **2.4.** Let $M \subset P$. Let f be an arbitrary function. Then we put $S(f, r, M) = \bigcup \{f * K; K \cap M = \emptyset, K = K(x, \sigma), \sigma < r \text{ and } f(\sigma) > 0\}.$
- **2.5.** We denote by G (resp. G_1 , resp. G_2) the system of all real functions which are increasing and continuous (resp. for which $\infty > g'(x) \ge 1$, resp. for which $\infty > g'(x) \ge 1$ and g(x) > x) on $(0, \delta)$ for some $\delta > 0$.
- **2.6.** We denote by G_3 the system of all functions $g \in G$ such that for any A > 0 and e > 1 there exists an integer r and $\delta > 0$ such that

$$(\underbrace{eg)_{\circ \dots \circ} (eg)}_{r\text{-times}})(x) \ge A g(x) \text{ for } 0 < x < \delta.$$

2.7. Let $f \in G$, $M \subset P$, $x \in P$. Then we say that x is a point of (f)-porosity of M if

$$\limsup_{R\to 0_+}\frac{1}{R}f(\gamma(x, R, M))>0.$$

2.8. Let $f \in G$, $M \subset P$, $x \in P$, c > 0. Then we say that x is a point of (f, c)-porosity of M if

$$\limsup_{R\to 0_+} \frac{1}{R} f(\gamma(x, R, M)) \ge c.$$

- **2.9.** Let $g \in G$, $H \subset G$, $M \subset P$, $x \in P$. Then we say that x is a point of $\langle g \rangle$ -porosity of M if $x \in \bigcap \{S(g, r, M); r > 0\}$. We say that x is a point of $\langle H \rangle$ -porosity of M if it is a point of $\langle h \rangle$ -porosity of M for any $h \in H$.
- **2.10.** Let V be one of the symbols (f), (f, c), $\langle h \rangle$, $\langle H \rangle$. Let $M \subset P$, $N \subset P$. Then we say that M is of V-porosity if any point $x \in M$ is a point of V-porosity of M. We say that N is a set of V-porosity if it is the union of a sequence of sets of V-porosity.
- **2.11.** We shall write "porosity" instead of "(x)-porosity" and " σ -porosity" instead of "(x)- σ -porosity".

Let us note:

- **2.12.** The notions of a set of (x^q) -porosity and of a set of (x^q) - σ -porosity coincide with the notions of N. Yanagihara of a set of porosity (q) and of a set of σ -porosity (q).
- **2.13.** Let V be one of the symbols (f), (f, c), $\langle h \rangle$, $\langle H \rangle$. Then the system of all sets of V-porosity is an ideal of sets and the system of all sets of V- σ -porosity is a σ -ideal of sets.
- **2.14.** A point $x \in R^k$ is a point of (x, 1/2)-porosity of a set $M \subset R^k$ iff there exists a sequence of spheres $\{K(s_n, r_n)\}$ such that $\lim_{n \to \infty} s_n = x$, $\lim_{n \to \infty} \varrho(x, s_n)/r_n = 1$ and $K(s_n, r_n) \cap M = \emptyset$ for $n = 1, 2, \ldots$

- **2.15.** Evidently, we may always write (af, ac) instead of (f, c) if a > 0.
- **2.16.** A point $x \in P$ is a point of $\langle h \rangle$ -porosity of a set $M \subset P$ iff there exists a sequence of spheres $\{K(s_n, r_n)\}$ such that $\lim_{n \to \infty} s_n = x$, $K(s_n, r_n) \cap M = \emptyset$ and $h(r_n) > \varrho(x, s_n)$ for $n = 1, 2, \ldots$
- **2.17.** Let V be one of the symbols (f), (f, c), $\langle h \rangle$, $\langle H \rangle$. Let $x \in P$, $M \subset P$. Then the point x is a point of V-porosity of the set M iff it is a point of V-porosity of the set M.

3. SEVERAL LEMMAS

- **3.1. Lemma.** Let (P, ϱ) be a metric space, $M \subset P$, $f \in G$. Then:
- (i) If $x \in P$ is a point of (f, 2)-porosity of M then it is a point of (f)-porosity of M.
- (ii) If $x \in M$ is a point of $\langle f \rangle$ -porosity of M then it is a point of (2f, 1)-porosity of M.
- Proof. The assertion (i) immediately follows from the continuity of f on $(0, \delta)$ and from the definitions. The assertion (ii) follows from the fact that if $K(y, h) \subset P M$, $x \in f * K(y, h)$ and h is sufficiently small then $f(\gamma(x, R, M)) > R/2$ where $R = 2\varrho(x, y)$.
- **3.2. Lemma.** Let $g \in G_1$. Then if d > 0 is a sufficiently small number, the relations $z \in g * I$, I = (t r, t + r) and $I \subset J = (u d, u + d)$ imply $z \in g * J$.

Proof. Let $d < \delta$, where δ is the number from the definition of the system G_1 (see 2.5). Then

$$\varrho(z, u) \le \varrho(z, t) + d - r < g(r) + d - r \le g(d)$$

and therefore $z \in g * J$.

3.3. Lemma. Let $M \subset (a, b)$ be a nowhere dense set. Let $g \in G_2$. Let $\{I_n\}_{n=1}^{\infty}$ be a sequence of pairwise disjoint open intervals such that $(a, b) - \overline{M} = \bigcup_{n=1}^{\infty} I_n$. Let H be the set of all endpoints of intervals I_n . Let P be the set of all points of $\langle g \rangle$ -porosity of M which lie in $\overline{M} \cap (a, b)$. Then

$$P = (H \cup \limsup_{n \to \infty} g * I_n) \cap (a, b).$$

Proof. Let $z \in (H \cup \limsup_{n \to \infty} g * I_n) \cap (a, b)$. If $z \in H$, then $z \in P$, since g(x) > x. for sufficiently small x. If $z \in \limsup_{n \to \infty} g * I_n$, then evidently $z \in P$. Let $y \in P - H$. Then 2.16 and 3.2 clearly imply $z \in \limsup_{n \to \infty} g * I_n$.

3.4. Lemma. Let $H \subset G$, $f \in G$, c > 0. Let n be an integer and $M \subset R^1$. Put $N = M \times R^n$. Then N is a set of (f, c)-porosity or of (f, c)-porosity, or of (f)-porosity, or of (f)-porosity, or of (f)-porosity in the space R^{n+1} iff M is of the same type as a subset of R^1 .

Proof. We shall prove only the part concerning (f, c)- σ -porosity, the proofs of the other parts being quite similar. The implication if follows from the fact that $\gamma((x, y), r, A \times R^n) \ge \gamma(x, r, A)$ for any $x \in R^1$, $y \in R^n$, $A \subset R^1$ and r > 0. Now we shall prove the implication "only if". Let $N = \bigcup_{k=1}^{\infty} N_k$ where any N_k is a set of (f, c)-porosity. Let $\{B_t\}_{t=1}^{\infty}$ be a basis of open sets in R^n . Denote by $A_{k,t}$ the set of all points $x \in M$ for which the set $\{z; (x, z) \in N_k\}$ is dense in B_t . Clearly $M = \bigcup_{k,t} A_{k,t}$ and therefore it is sufficient to prove that each set $A_{k,t}$ is of (f, c)-porosity. Let $x \in A_{k,t}$ and $z \in B_t$ be such that $(x, z) \in N_k$. Clearly for any r > 0 such that $K(z, r) \subset B_t$, the inequality $\gamma((x, z), r, N_k) \le \gamma(x, r, A_{k,t})$ holds. Since N_k is a set of (f, c)-porosity in R^{n+1} , the set $A_{k,t}$ is a set of (f, c)-porosity in R^{n+1} , the set $A_{k,t}$ is a set of (f, c)-porosity in R^{n+1} , the set $A_{k,t}$ is a set of (f, c)-porosity in R^{n+1} , the set $A_{k,t}$ is a set of (f, c)-porosity in R^{n+1} .

3.5. Lemma. Let P be a metric space and $f \in G$. Let $A \subset P$ be a set of (f)- σ -porosity. Then $A = \bigcup_{n=1}^{\infty} A_n$ where A_n is a set of (f, c_n) -porosity for some $c_n > 0$, $n = 1, 2 \dots$

Proof. Let $A = \bigcup_{i=1}^{\infty} B_i$ where each set B_i is a set of (f)-porosity. For any i let $B_{i,k}$ be the set of all points $x \in B_i$ which are points of (f, 1/k)-porosity of the set B_i . Clearly $B_i = \bigcup_{k=1}^{\infty} B_{i,k}$ and each set $B_{i,k}$ is a set of (f, 1/k)-porosity. Now it is sufficient to order the sets $B_{i,k}$ in a sequence $\{A_n\}_{n=1}^{\infty}$.

4. SOME AFFIRMATIVE RESULTS

In the present part we shall prove that some properties like σ -porosity are equivalent with other, seemingly weaker properties of this type. We use only one method which is contained in the following basic proposition.

4.1. Proposition. Let $h \in G$, $f \in G$. Let there exist an integer n and $\delta > 0$ such that

(1)
$$h^{(n)}(x) = \underbrace{h \circ \ldots \circ h}_{n-\text{times}}(x) \ge f(x) \quad \text{for} \quad 0 < x < \delta.$$

Let P be a metric space and let $M \subset P$ be a set of $\langle f \rangle$ - σ -porosity. Then M is a set of $\langle h \rangle$ - σ -porosity.

Proof. It is clearly sufficient to prove that if A is a set of $\langle f \rangle$ -porosity then it is a set of $\langle h \rangle$ - σ -porosity. Put $C_k = A \cap \bigcap_{r>0} S(h^{(k)}, r, A)$, (see 2.4). Then $A \subset C_n$ and

therefore $A \subset \bigcup_{k=2}^{n} (C_k - C_{k-1}) \cup C_1$. Since obviously C_1 is a set of $\langle h \rangle$ -porosity it is sufficient to prove that $C_k - C_{k-1}$ is a set of $\langle h \rangle$ - σ -porosity for $k=2,\ldots,n$. Put $T_{k,m} = C_k - S(h^{(k-1)}, 1/m, A)$ for $k=2,\ldots,n$ and $m=1,2,\ldots$. Since clearly $C_k - C_{k-1} = \bigcup_{m=1}^{\infty} T_{k,m}$, it is sufficient to prove that any set $T_{k,m}$ is a set of $\langle h \rangle$ -porosity. Let $z \in T_{k,m}$, r > 0. Then there exists an open sphere K(y, t) such that $t < \min(1/m, r)$, $K(y, t) \cap A = \emptyset$ and $z \in h^{(k)} * K(y, t)$. Put $K = h^{(k-1)} * K(y, t)$. Then $z \in h * K$ and $K \cap T_{k,m} = \emptyset$ since $K \subset S(h^{(k-1)}, 1/m, A)$. Since the radius of the sphere K is arbitrarily small provided r is sufficiently small, z is a point of $\langle h \rangle$ -porosity of the set $T_{k,m}$. Therefore $T_{k,m}$ is a set of $\langle h \rangle$ -porosity. Thus the proof is complete.

4.2. Proposition. Let $h \in G$, $f \in G$. For any B > 0, let there exist A > 0, $\delta > 0$ and an integer r such that

(2)
$$(\underline{Ah}) \circ \dots \circ (\underline{Ah}) (x) \ge B f(x) \quad for \quad 0 < x < \delta.$$

Let P be a metric space and let $M \subset P$ be a set of (f)- σ -porosity. Then M is a set of (h)- σ -porosity.

Proof. By 3.5, $M = \bigcup_{m=1}^{\infty} M_m$ where M_m is a set of (f, c_m) -porosity, $c_m > 0$. By 2.15 and 3.1 M_m is a set of $\langle 2f/c_m \rangle$ -porosity. By 4.1 and (2) it is a set of $\langle Ah \rangle$ - σ -porosity for some A > 0. Therefore by 2.15 and 4.1 it is a set of (h)- σ -porosity. Consequently M is of (h)- σ -porosity.

4.3. Theorem. Let 0 < q < p < 1 and let M be a subset of a metric space. Then M is a set of (x^q) - σ -porosity iff it is a set of (x^p) - σ -porosity.

Proof. Let B > 0. Then the inequality (2) from Proposition 4.2 holds for A = 1, $h = x^p$, $f = x^q$, an integer r such that $p^r < q$ and for a sufficiently small $\delta > 0$. Therefore the statement of the theorem follows from 4.2.

4.4. Proposition. Let P be a metric space and $g \in G_3$ (see 2.6). Let $M \subset P$ be a set of (g)- σ -porosity and $0 < c < \frac{1}{2}$. Then M is a set of (g, c)- σ -porosity.

Proof. By 3.5 it is sufficient to prove that any set N of (g, a)-porosity is a set of (g, c)- σ -porosity. By 3.1, N is a set of $\langle 2g/a \rangle$ -porosity. Put A = 2/a and e = 1/2c. Let r be the integer from 2.6. Then the inequality (1) from 4.1 holds for f = 2g/a, h = g/2c and for sufficiently small $\delta > 0$. Therefore by 4.1, N is a set of $\langle g/2c \rangle$ - σ -porosity and consequently it is a set of (g, c)- σ -porosity.

Since obviously $x^q \in G_3$ for $0 < q \le 1$, we have

4.5. Theorem. Let P be a metric space, $0 < q \le 1$, $0 < c < \frac{1}{2}$. Then a subset of P is a set of (x^q) - σ -porosity iff it is a set of (x^q) , (x^q) - σ -porosity.

5. SOME NEGATIVE RESULTS

In the present part we shall prove that some properties like σ -porosity are not equivalent with the others. We use only one method which is contained in the following basic proposition.

5.1. Proposition. Let $f \in G$ and $H \subset G_2$ (see 2.5). Let there exist a sequence $\{h_i\}_{n=1}^{\infty}$ of functions from H and a sequence of positive numbers $\{\varepsilon_n\}_{n=1}^{\infty}$ such that

(3)
$$h_n \circ \ldots \circ h_1(x) < f(x) \quad \text{for} \quad 0 < x < \varepsilon_n.$$

Then in any Euclidean space there exists a perfect set F of $\langle f \rangle$ -porosity which is not a set of $\langle H \rangle$ - σ -porosity.

Along with 5.1, we shall prove the following proposition.

5.2. Proposition. Let $g \in G$ and $\lim_{x \to 0} x/g(x) = 0$. Then in any Euclidean space

there exists a perfect set F of (g, 1)-porosity and of measure zero which is not of σ -porosity.

Proof. 3.4 implies that it is sufficient to construct a set F on the line. Let $\{k_i\}_{i=1}^{\infty}$ be an increasing sequence of integers such that $k_1 = 1$. Our construction depends on this sequence. For a proof of 5.1, the sequence $\{k_i\}$ may be chosen in an arbitrary way but for a proof of 5.2 we must choose it in a special way. Given $\{k_i\}$ define a sequence $\{s_p\}_{p=1}^{\infty}$ by the relations $k_{s_p} \leq p \leq k_{s_p+1}$. We may and will assume that $\lim \varepsilon_n = 0$.

From the segment $\langle 0, 1 \rangle$ we shall delete in the k-th step a finite number of pairwise disjoint intervals, D-intervals of the order k. The points from $\langle 0, 1 \rangle$ not contained in any D-interval will form the set F. For any integer k we shall define a system of remaining intervals (R-intervals) of the order k. Any R-interval will be closed. The system of all R-intervals of the order k and of all D-intervals of orders $j \leq k$ will form a covering of $\langle 0, 1 \rangle$ and any two members of this system will have disjoint interiors.

Define the *D*-intervals and the *R*-intervals by induction:

- 1. A *D*-interval of the order 1 does not exist. As the system of all *R*-intervals of the order 1, let us choose any covering of $\langle 0, 1 \rangle$ by closed intervals of a length smaller than ε_2 such that any two its members have disjoint interiors.
- 2. Let k be an integer. Let D-intervals and R-intervals of all orders smaller than k+1 be defined. Let $R_1, ..., R_{i_k}$ be all R-intervals of the order k. For $j=1, ..., i_k$

define an open interval $D_j \subset R_j$ by the relation $(h_{s_k+1} \circ \ldots \circ h_1) * \overline{D}_j = R_j$. Define the system of all *D*-intervals of the order k+1 as the system D_1, \ldots, D_{i_k} . The endpoints of the intervals D_j and $(h_t \circ \ldots \circ h_1) * D_j$, $j=1,\ldots,i_k$, $t=1,\ldots,s_k+1$ divide (0,1) to a finite number of closed intervals. Let A_1,\ldots,A_{b_k} be all of these intervals which are disjoint with each *D*-interval of the order k+1.

For $1 \le r \le b_k$ let C_r be a system of closed intervals of a length smaller than $\varepsilon_{s_{k+1}+1}$ such that $\bigcup \{X; X \in C_r\} = A_r$ and any two members of C_r have disjoint interiors. Define the system of all R-intervals of the order k+1 as the system $\bigcup C_r$.

The following assertions are easily verified:

- (i) F is a perfect set of $\langle f \rangle$ -porosity.
- (ii) Let R be an R-interval of an order k and let $m \le s_k$ be an integer. Then the set $R \bigcup \{(h_m \circ \ldots \circ h_1) * D; D \subset R \text{ is a } D\text{-interval}\}$ is a nonempty perfect set. If a contiguous interval of this set lies in R then it is of the form $(h_m \circ \ldots \circ h_1) * D$, where $D \subset R$ is a D-interval.
- (iii) Let D be a D-interval of an order k and let $m \le s_{k-1} + 1$ be an integer. Let R be a R-interval such that Int $R \cap D = \emptyset$. Then either Int $R \subset (h_m \circ \ldots \circ h_1) * D$ or $R \cap (h_m \circ \ldots \circ h_1) * D = \emptyset$.

Now suppose that F is a set of $\langle H \rangle$ - σ -porosity. Then $F = \bigcup_{i=1}^{\infty} P_i$ where each P_i is a set of $\langle H \rangle$ -porosity. We shall define a sequence $\{F_i\}_{i=0}^{\infty}$ of nonempty perfect sets such that $F \supset F_{i-1} \supset F_i$ and $F_i \cap P_i = \emptyset$ for $i=1,2,\ldots$ The existence of such a sequence yields a contradiction since it implies that there exists a point $x \in \bigcap_{i=0}^{\infty} F_i \subset F$ which does not lie in $\bigcup_{i=1}^{\infty} P_i = F$. Each set F_i will have the form

(4)
$$F_i = R_i - \bigcup \{(h_i \circ \ldots \circ h_1) * D; D \subset R_i \text{ is a } D\text{-interval}\},$$

where R_i is an R-interval of an order $j \ge k_{i+1}$ and $(h_0 \circ \ldots \circ h_1) * D = D$. By (ii) any set of the form (4) is a nonempty perfect set.

Define the sets F_i by induction:

- A. Put $F_0 = R_0 \cap F$ where R_0 is an R-interval of the order 1.
- B. Suppose that we have defined the set F_i . We shall distinguish two cases:
- B 1. $F_i \, \leftarrow \, \overline{P}_{i+1}$. Then define R_{i+1} as an R-interval of an order $j \geq k_{i+2}$ such that $R_{i+1} \cap \overline{P}_{i+1} = \emptyset$ and $R_{i+1} \cap F_i$ is an infinite set. Define the set F_{i+1} by (4).
- B 2. $F_i \subset \overline{P}_{i+1}$. Then any point of P_{i+1} is a point of $\langle h_{i+1} \rangle$ -porosity of F_i . Therefore by 3.3 and (ii) any point $x \in \text{Int } R_i \cap P_{i+1}$ lies in an interval of the form

$$h_{i+1} * ((h_i \circ \ldots \circ h_1) * D) = (h_{i+1} \circ \ldots \circ h_1) * D$$

where $D \subset R_i$ is a D-interval. Therefore the nonempty perfect set $A = R_i - \bigcup \{(h_{i+1} \circ \ldots \circ h_1) * D; D \subset R_i\}$ and the set Int $R_i \cap P_{i+1}$ are disjoint. Define R_{i+1}

as an R-interval of an order $j \ge k_{i+2}$ such that $R_{i+1} \subset \operatorname{Int} R_i$ and $R_{i+1} \cap A$ is an infinite set. Then define the set F_{i+1} by (4). Since (iii) implies $F_{i+1} = R_{i+1} \cap A$ we have $F_{i+1} \cap P_{i+1} = \emptyset$. Thus the proof of 5.1 is complete.

To prove 5.2 put f = g/2 and $H = \{6x\}$. Then the assumptions of 5.1 are obviously fulfilled. If we denote by m_i the measure of the union of all R-intervals of the order k_i , then evidently

$$m_{i+1} = m_i (1 - 1/6^{i+1})^{k_{i+1}-k_i}$$

Therefore there exists a sequence $\{k_i\}_{i=1}^{\infty}$ such that $\lim_{i\to\infty} m_i = 0$ and consequently $\mu F = 0$. The set F is a set of $\langle g/2 \rangle$ -porosity and therefore it is of (g, 1)-porosity. On the other hand, F is not a set of $\langle 6x \rangle$ - σ -porosity and therefore it is not a set of (3x, 1)- σ -porosity. Now 4.5 implies that F is not a set of σ -porosity.

5.3. Proposition. Let $h \in G_3$, $f \in G_1$. Let there exist B > 0 such that for any A > 0 and any integer r there exists $\delta > 0$ such that

$$\underbrace{(Ah) \circ \dots \circ (Ah)}_{r\text{-times}}(x) < Bf(x) \quad for \quad 0 < x < \delta.$$

Then in any Euclidean space there exists a perfect set of (f)-porosity which is not of (h)- σ -porosity.

Proof. By 5.1, in any Euclidean space there exists a perfect set F of $\langle Bf \rangle$ -porosity which is not of $\langle 6h \rangle$ - σ -porosity. Thus F is a set of (f)-porosity but not of (3h, 1)- σ -porosity and by 4.4 it is not of (h)- σ -porosity.

The following theorem is a consequence of 5.2.

5.4. Theorem. Let 0 < q < 1. Then in any Euclidean space there exists a perfect set F of $(x^q, 1)$ -porosity and of measure zero which is not of σ -porosity.

The existence of a perfect set of (x^q) -porosity which is not of σ -porosity follows also from the following easy theorem.

5.5. Theorem. Let 0 < q < 1. Then in any Euclidean space there exists a perfect set D of (x^q) -porosity and of positive Lebesgue measure.

Proof. 3.4 implies that it is sufficient to construct the set D on the line. We shall define a sequence of sets such that S_k contains 2^k disjoint closed intervals:

1.
$$S_0 = \{\langle 0, 1/2 \rangle\}.$$

2. Suppose that we have defined $S_k = \{I_1, ..., I_{2k}\}$. For $j = 1, ..., 2^k$ define closed disjoint intervals I'_j, I''_j such that

$$x^q * (I_j - (I_j' \cup I_j'')) = \operatorname{Int} I_j.$$

Put $S_{k+1} = \{I'_1, I''_1, ..., I'_{2^k}, I''_{2^k}\}$. Put $D_k = \bigcup \{I; I \in S_k\}$ and $D = \bigcap_{k=0}^{\infty} D_k$. The set D is

clearly a perfect set of (x^q) -porosity. We have

$$\mu(I'_j \cup I''_j) = \mu I_j (1 - 2^{1-1/q} (\mu I_k)^{1/q-1}).$$

Since $\mu I_1 < 1/2^{n+1}$, we have

$$\mu(I'_j \cup I''_j) > \mu I_j (1 - 2^{(1-1/q)(n+2)}).$$

If we denote $\mu D_k = m_k$, we have

$$m_{n+1} > m_n (1 - 2^{(1-1/q)(n+2)})$$

and therefore

$$m_{n+1} > \frac{1}{2} \prod_{k=0}^{n} (1 - 2^{(1-1/q)(k-2)})$$

and

$$\mu D \ge \frac{1}{2} \prod_{k=0}^{\infty} (1 - 2^{(1-1/q)(k+2)}) > 0.$$

Thus the proof is complete.

The following theorem justifies the complicated form of 5.1.

5.6. Theorem. In any Euclidean space there exists a perfect set F of porosity which is not a set of (x, 1/2)- σ -porosity.

Proof. Let $H = \{ax; a > 1\}$. For an integer n put $h_n = (1 + 1/n^2) x$. Put $c = \prod_{k=1}^{\infty} (1 + 1/k^2)$ and f(x) = 2cx. Then the assumption (3) from 5.1 is obviously fulfilled and therefore in any Euclidean space there exists a perfect set F of $\langle 2cx \rangle$ -porosity which is not a set of $\langle H \rangle$ - σ -porosity. The set F is clearly a set of porosity but not of (x, 1/2)- σ -porosity since a set is of (x, 1/2)-porosity iff it is of $\langle H \rangle$ -porosity.

5.7. Theorem. Let 0 < q < 1. Then in any Euclidean space there exists a perfect set D which is not a set of (x^q) - σ -porosity.

Proof. The theorem immediately follows from 5.3 if we put $h = x^q$, $f = (\log(1/x))^{-1}$, B = 1.

6. SOME OPEN PROBLEMS

- **6.1. Problem.** Does there exist a (perfect) set on the line of the first category and of measure zero which is not a set of (x^q) - σ -porosity for 0 < q < 1?
- **6.2. Problem.** Does there exist $f \in G$ such that any (perfect) set on the line of measure zero and of the first category is a set of (f)- σ -porosity?