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HARMONIC MAPPINGS OF SURFACES

Avrois Svec, Olomouc
(Received November 7, 1975)

We are going to study the harmonic and slightly less than harmonic mappings
f:M > N in the case dim M = dim N = 2. For further details, see [1]—[9].

1. Let M, N be Riemannian manifolds, dim M = dim N =2, f: M — N a map-
ping; everything be of class C*. Let us suppose that M and N are oriented and
f: M — N is orientation preserving. Let M be covered by a system of domains such
that in each of them we are able to choose a field of orthonormal frames {v,, v,},
let {w', w?} be the dual bases. The Euclidean connection of M is then given by

(1.1) Vm = o'v; + 0*v,, Vv, = olv,, Vv, = —olv, ;
do! = —0? A 0, do?® =o' A o}, do = —Ko' A 0?,
K being the curvature of M. Analoguously, the connection on N be given by
(1.2) V*n = QU + Q%% VRt = Q%Y , VRl = —Qivt;
dQ' = —Q* A @}, dQ2 =Q' A @}, dQ? = —K*Q' A Q2.

On M, we get the induced forms

(1.3) =0, 12 :=f*Q%, 1} :=f*0}
satisfying

(1.4) dil = =2 a1}, di? =1 A}, di? = —K*t! A T2,
Let us write

(1.5) ! = aq,0' + 4,0, 1 = a0 + a0

Then

(1.6) ' A 2 = po' A @*, where p =a,a, —aa; 20.

By means of successive exterior differentiations of (1.5), we get the existence of
functions b,, ..., be, ¢y, ..., cg such that
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(1.7)  (day — a,0% — a;37)) A o + (da, + a0} —a, 7)) A 0? =0
(day — ag0? + a,7%) A @' + (da, + @30 +a,73) A @? =0;
(1.8) . da, — a0} — a;1? = b,o! + b,0?,
da; — a0} + a;1} = byo' + bsw?,
da, + a,0% — a1} = b0' + b0?,
dag + a;0% + a,72 = bso' + bew?;
(19)  (dby — 2b,0% — byt?) A @' + {db, + (b, — by) w? — bst?} A @
= (a,K + azpK*) o' A 0?,
"{db, + (by — by) W% — bst}} A @' + (dby + 2b,0] — betd) A ©P
= (—a,K + a,uK*) o' A @?,
(dby — 2bsw] + by13) A @' + {dbs + (by — be) @] + by1}} A @?
= (a4K - alﬂK') ol A 0? 5
{dbs + (by — bg) @] + by11} A @' + (dbg + 2bsw] + b31) A @2
= (—a;K — a,uK*) o' A 0*;
(1.10) db, — 2b,w? — b1} = c,0' + c,0?,
db, + (by — by) 0} — bst? = (c; + a;K + a;pK*) o' +
+ (¢ + a,K — auK*) 0?,
db; + 2b,0% — bgt? = ;0! + c,0?,
db, — 2bsw? + b;7? = cs0! + cgw?,
dbs + (bs — be) 3 + b1} = (c6 + a,K — a,pK*) o' +
+ (¢7 + a;K + a,uK*) 0?,
db§ + 2b5wi + b3ti = C7w1 + 080)2 .
Of course, we have ‘
(1.11) ds? = (0')? + (0?)?,
| ds? = (¢') + (22 = | |
= (a? + a§) (@')? + 2(a,a, + a3a4) 0'®? + (a5 + a3) (0?)*.
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The fundamental invariants of f are
(1.12) I, =a} +a3+a3+ak, I, =(a, — ay)* + (a, + a3)*.

The mapping f is called constant if I, = 0; f is said to be conformal if I, = 0; the
geometrical signification is obvious. To each point m e M, we get the induced qua-
dratic mapping

(1.13) Fax i T(M) = TymN) ,
Sax(xvs + yv,) = (b;x* + 2byxy + byy?) v} + (bax? + 2bsxy + bgy®) v ;
see [2]. Further, we get the mappiﬁg
(1.14)  t:M > T(N), t(m)e Tym(N); t=(by + by)o* + (b, + by)v};
t is the so-called tension field. The expressions
(1.15)  Jy = (by + b3)? + (by + bg)?, J, = b} + 2b3 + b} + bZ + 2b3 + b}

are invariants of f as well; fis said to be harmonic if J, = 0,and it is totally geodesic
if Jz = 0.

2. Let us produce several integral formulas.
First of all, consider the 1-form

2.1) 01 = {(ar — ad) (bs + bs) — (az + a5) (by — be)} ' +
+ {(ay — a4) (b3 + bs) — (a5 + a3) (b, — be)} @

@, is invariant. Then

(2.2) f 0, =J. {2L; — I(K + pK*)} o' A 0?,
M M
. bl = bs b2 = b6 .
where Ly = (5 1 b, by + b

For the invariant form

(2:3) @, = {(ay + a4) (b — by) — (a, — a3) (b + bs)} 0* +

+, {(al + a,) (b3 — bs) — (a; — a3) (b + bs)} w?,
we get

(24) J‘ P2 =J {2L; + I;(uK* = K)} 0! A 0?,
oM M

b, + bs by + b

where L, = b, — by by — b,
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and

(2.5) I3 = (al + 04)2 + (az e 03)2 .
Further,
(2.6) %dll = (albl + azbz + a3b4 + a4b5) (Dl +

+ (aib, + a,by + asbs + agbe) @?,

1€,
27) % f wdl, = J' (ules +¢3) + as(es + €2 + asles + 02} + aales + c5) +
oM M

+ Jz + I,K — 2u*K*} o' A 0?.

Analoguously,

(2.8) 3dI, = {(ay — as) (by — bs) + (az + a5) (bs + ba)} ' +
+ {(a, — aq) (b, — bs) + (ay + a3) (b3 + bs)} 0?

and

(2.9

%J‘ ‘dlz =I {(al —04)(01 + C3 — Ce — CB) + (az + a3)(C2 + Ca + Cs + C7) +
oM M

+ (by — bs)* + (b + by)* + (by — be)® + (b3 + bs)* + I,(K + pK*)} o' A ?.
Next,

(2.10) YdIy = {(a; + a4) (b, + bs) + (a, — a3) (b, — by)} @' +

+ {(ay + a4) (b2 + bs) + (a2 — a3) (b3 — bs)} &

and :
2.11) lf v dl, =‘[ {(er + ae)(er + ¢ + c6 + cg) +
¢ 2 ) o
+ (a, — a3)(c; + ¢4 — ¢s — ¢q) + (by + bs)* + (b, — by)* +
+ (b; + be)* + (bs — bs)? + I)(K — pK*)} o' A 0.
Finally, consider the invariant 1-form
(2.12) @3 = {(by + b3)(cs + ¢7) — (bs + bs) (c; + ¢3)} @ +
+ {(b; +.b3)(cs + ¢s) — (bs + bg)(c, + c4)} w?.
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From (1.10), we get
(2.13) d(by + bs) — (b + bg) 1} = (c; + ¢3) 0 + (c; + ¢4) 02,
“d(bs + bg) + (by + b3) 1} =(cs5 + ¢;) @' + (c6 + c5) W?.
The exterior differentiation yields
(2.14) {d(c, + ¢3) = (c2 + c4) @3 — (c5 + ¢7) 2} A 0! +
+ {d(c; + ca) + (c; + c3) @} — (c6 + c5) i} A @? = (by + bg) uK*! A 0?,
{d(cs + ¢1) — (c6 + cg) @] + (c1 + ¢3) 11} A ' +
+ {d(ce + cg) + (cs + ¢1) @1 + (c; + ¢g) 2} A @? = —(b; + by) uK*0' A w?
and the existence of functions e, ..., e such that
(2.15) d(c; + ¢3) — (3 + ca) @7 — (c5 + ¢;) 11 = ey’ + (e; — bpuK*) 0?,
d(c, + ¢) + (c; + ¢3) @7 — (c6 + cg) 11 = (e, + buK*) 0' + es0?,
d(cs + ¢;) — (c6 + cg) @} + (cy + ¢3) 11 = eq0' + (es + buK*) 0?,
d(ce + cg) + (cs + 1) 0] + (c; + ¢4) 11 = (65 — b3uK*) 0 + 507 .
By means of (2.13) and (2.15), we get the integral formula

¢, +c3 ¢+ ¢y

2.16) . =| (2L, — J,uK*) o' A @*>, where L, = -
(2.10) J.au% J.M( S ) 37 les + ¢ ¢ + 5

3. Let us explain the geometrical interpretation of the invariants L;. Introduce the
invariant operator

(31) *:T,M)>T,(M), meM; =*(xv; + yv,) = —yv, + x0,;

satisfying w(*v) + *w(v) =0 for ve T, (M), we Tp(M). To fys (1.13), consider
the associated bilinear mapping

(3.2) L : Ty(M) x T,(M) > Tym(N),
ZL(x'v, + x%v,, yoy + y0,y) = (byx'y* + byx'y? + byx?y' + byx?y?) vl +
4 (bax'y' + bsx'y? + bsx®y' + bex?y?) v} .
Finally, consider the operator

(33) *:T(N)> T(N), neN; (o} + nv3) = —no} + &3 :
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Lemma 1. Let v € T,,(M) be an arbitrary unit vector. Then
(34) Ly = (Z(v,v) + »L(v, »), L(*v, xv) — +»L(v, )},
L, = {Z(v,v) — «L(v, »v), L(*v, %) + +L(v, %)) .

Proof. Because of the invariance of L,, L, and %, we may choose the frames such
that v = v, i.e., *v = v, at m e M. Then

L(vy, v,) = byv} + b3,
L(vy, v;) = byvt + bsvy, L(vy,v,) = byv} + bev},

and our Lemma follows. QED.

Lemma 2. Let t (1.14) be the tension field, v € T, (M) an arbitrary unit vector and

(3.5) Vi=fov, W:=fy(sv).
Then
(3.6). ‘ Ly = {+*Vyt, Vt) .

Proof. We have
V*t = (by + bg) (17 — Q1) vT + (by + by) (] — 7}) 05 +
+ {(c1 + c5) @' + (c; + cg) @?} v} + {(c5s + ¢7) @* + (c6 + c5) @?} V3.

Notice that, for each form Q € T*(N) and each vector v € T(M), we have f* Q(u)
= Q(f4v). Set v = v, at m € M. Then

Vot =(c, + c3)01 + (cs + c7)v3, Vit =(cz + cs) v + (c6 + cg) V3,

and the Lemma follows. QED.

Lemma 3. Let t (1.14) be the tension field and V, W be defined by (3.5). Let& = 1.
Then

(3.7 Vit +e*xVypt =0
for each ve T(M) if and only if
(3.8 ¢, +¢3 —&(ce + cg) =c; + ¢4 + 8(cs + ¢;) =0.
Proof. Let v = xv, + yv,. Then
Vot = {(c; + c3)x + (c; + cg) y} v} + {(c5s + 01) x + (cs + ¢5) ¥} V3,
Vit = {(c; + cg) x = (1 + c3) ¥} o + {(cs + cs) x — (cs + ¢7) y} v}
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and
Vit + ex Vit = {c, + c3 — &(ce + cg)} (xv] — epv3) +

+ {c; + cq + &cs + ¢;)} (yo] + exv3).

The Lemma follows easily. QED.

4. Our main task is to obtain several typical geometric consequences of our integral
formulas (2.2, 4,7,9, 11, 16). In all theorems, M and N are Riemannian manifolds,
dimM =dim N =2, f:M — N is an orientation preserving mapping, ¢M the
boundary of M. All other notions have been explained above.

First of all, let us state the following

Lemma 4. The condition
(4.1) f is harmonic
and|or the condition
(42)  for each me M there is dim fox(T,,(M)) < 1 and there exists a vector
0 * ve T,(M) such that f,,.(v) =0
implies
(4.3) L ,£0, L,<0.
Proof. The condition (4.1) is equivalent to b, + b; = b, + bs = 0. Hence
L = —(b; — bs)> = (by + by)*.<0, L, = —(by +b,)> — (b, — by)* £0.

From (4.2), we get — see (1.13) — the existence of functions ¢, ¢, B, B,, B, such
that
by =¢oB,, b, =¢B,, by =¢B;, b,=0B,, bs=0B,, bsg=0B,
and
fas(xv; + yv;) = (B;x* + 2B,xy + B3y?) (v} + ov3).
Further,
Ll = L2 = (Qz + 0'2) (B1B3 = Bg) ’

and our Lemma follows. QED. ;

Theorem 1. Suppose: (i) L, < 0on M, (ii) K > 0 on M, (iii) K* = 0 on f(M) < N,
(iv) I, = 0 on M. Then f is conformal.

Proof is a direct consequence of (2.2). QED.
Theorem 2. Suppose: (i) M is compact, (ii) L, £ 0 on M, (iii) K > 0 on M,
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(iv) K* < 0 on f(M) = N. Then f is a constant mapping. We may suppose (i’)
J, = 0 on oM instead of (i).

Proof. From (24),a, + a, = a, — ay; = 0. Hence p = —a} — a3; frompu 2 0,

we get a; = a; = 0. QED.

Theorem 3. Suppose: (i) f is harmonic, (i) K = 0 on M, (iii) K* < 0 on f(M) < N,
(iv) J; = 0 on OM. Then f is totally geodesic. Replacing (ii) by (ii'’) K > 0 on M, f
has to be a constant mapping.

Proof is a consequence of (2.7). QED.
Theorem 4. Suppose: (i) for each v e T(M), we have Vyt + *Vyt = 0, t being the

tension field and V := fyv, W := fy(*v), (ii) K > 0 on M, (iii) K* = 0 on f(M) < N,
(iv) I, = 0 on OM. Then f is conformal.

Proof follows from Lemma 3 and (2.9). QED.
Theorem 5. Suppose: (i) for each v e T(M), we have Vit + *Vyt = 0, t being the

tension field and V := f,, W:= f,(»v), (ii) K 2 0 on M, (iii) K* = 0 on f(M) < N,
(iv)I, = 0 on dM. Then f is harmonic and we have

(4.9) (K + pK*) =0
at each point me M.
Proof. From Lemma 3 and (2.9),
by —bs=by +by=b, —bg=b; +bs=0

and f is to be harmonic. From (1.10),
ci —ce—aK + auK* =0, ¢, —cy+ a,K + auK* =0,
¢, —c; —azK — azyK_" =0, c¢3—cg+aK—aukK*=0,
c; +cs+ aK+ auK* =0, c¢3+cg+ aK —aukK*=0,
c3+cs+a K —auK*=0, c4+c;+a;K+ auK*=0.

By the elimination of c,, ..., ¢y from these equations and from (3.8) for ¢ = 1,
we get
(a1 — as) (K + pK*) = (a; + a3) (K + pK*) = 0,

i., (4.4). QED.

Theorem 6. Suppose: (i) M is compact, (i) for each ve T(M), we have Vyt =
= aVyt, t being the tension field and V:= fy(v), W:= fy(sv), (ii) K > 0 on M,
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(iv) K* £ 0 on f(M) = N. Then f is a constant mapping. Instead of (i), it is suf-
ficient to suppose (i’) J, = 0 on M.

Proof. From Lemma 3 and (2.11), we get I; =0, i.e., p = —a} — a3. From
u=0,wegeta, =a, =0.QED.

Theorem 7. Suppose: (i) M is compact, (ii) for each v e T(M), Vyt = *Vyt, t being
the tension field and V:= fy(v), W:= f(»v), (iii) K 2 0 on M, (iv) K* <0 on
f(M) = N. Then f is harmonic and we have

(4.5) Ii(K — uK*) = 0

at each point m e M. Instead of (i), it is sufficient to suppose (i') J, = 0 on oM.
Proof. From Lemma 3 and (2.11),
by +bs=b, —b, =b, + bg=by —bs =0,
and f is harmonic. From (1.10),
¢, +cg+ aK —auK* =0, ¢, +c;+ a,K+ auK* =0,
¢ +c¢q+ a3K + auK* =0, c¢3+cg+ a;K — auK* =
¢; —¢s + aK + auK* =0, ¢3 —cs —aK + a,puK* =
c3—cg+a,K —auuK* =0, c¢4—cy—a3K —a,uK*=0.
The elimination of c,, ..., cg from these equations and from (3.8) for &= —1
implies
(ay + a4) (K — puK*) =0, (a, —a3)(K — puK*) =0,

ie., (4.5). QED.

Theorem 8. Suppose: (i) L, = 0 on M, (ii) K* < 0 on f(M) < N, (iii) fo(T{M)) =
= Tym(N) for each me M, (iv) J, = 0 on M. Then f is a harmonic mapping.

Proof. From (2.16), J, = 0 on M. QED.

Theorem 9. Suppose: (i) M is compact, (i) J, = const. + 0 on M, (iii) K* > 0
or K* < 0 on f(M) = N. Then dim f(T,(M)) < 1 for each me M.

Proof. From J; = const. and (1.10), we get
©(by + b3)(ey + c3) + (by + b6)(_q, +¢;) =0,
(bl + b3) (Cz + 04) + (b4 + bﬁ) (06 + Ca) = 0
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