

Werk

Label: Article **Jahr:** 1976

PURL: https://resolver.sub.uni-goettingen.de/purl?31311157X_0101 | log82

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

HARMONIC MAPPINGS OF SURFACES

ALOIS ŠVEC, Olomouc (Received November 7, 1975)

We are going to study the harmonic and slightly less than harmonic mappings $f: M \to N$ in the case dim $M = \dim N = 2$. For further details, see [1] - [9].

1. Let M, N be Riemannian manifolds, dim $M = \dim N = 2$, $f: M \to N$ a mapping; everything be of class C^{∞} . Let us suppose that M and N are oriented and $f: M \to N$ is orientation preserving. Let M be covered by a system of domains such that in each of them we are able to choose a field of orthonormal frames $\{v_1, v_2\}$, let $\{\omega^1, \omega^2\}$ be the dual bases. The Euclidean connection of M is then given by

(1.1)
$$\nabla m = \omega^{1} v_{1} + \omega^{2} v_{2}, \quad \nabla v_{1} = \omega_{1}^{2} v_{2}, \quad \nabla v_{2} = -\omega_{1}^{2} v_{1};$$

$$d\omega^{1} = -\omega^{2} \wedge \omega_{1}^{2}, \quad d\omega^{2} = \omega^{1} \wedge \omega_{1}^{2}, \quad d\omega_{1}^{2} = -K\omega^{1} \wedge \omega^{2},$$

K being the curvature of M. Analoguously, the connection on N be given by

(1.2)
$$\nabla^* n = \Omega^1 v_1^* + \Omega^2 v_2^*; \quad \nabla^* v_1^* = \Omega_1^2 v_2^*; \quad \nabla^* v_2^* = -\Omega_1^2 v_1^*;$$
$$d\Omega^1 = -\Omega^2 \wedge \Omega_1^2; \quad d\Omega^2 = \Omega^1 \wedge \Omega_1^2; \quad d\Omega_1^2 = -K^* \Omega^1 \wedge \Omega^2.$$

On M, we get the induced forms

(1.3)
$$\tau^1 := f^* \Omega^1, \quad \tau^2 := f^* \Omega^2, \quad \tau_1^2 := f^* \Omega_1^2$$

satisfying

(1.4)
$$d\tau^1 = -\tau^2 \wedge \tau_1^2$$
, $d\tau^2 = \tau^1 \wedge \tau_1^2$, $d\tau_1^2 = -K^*\tau^1 \wedge \tau^2$.

Let us write

(1.5)
$$\tau^1 = a_1 \omega^1 + a_2 \omega^2, \quad \tau^2 = a_3 \omega^1 + a_4 \omega^2.$$

Then

(1.6)
$$\tau^1 \wedge \tau^2 = \mu \omega^1 \wedge \omega^2$$
, where $\mu = a_1 a_4 - a_2 a_3 \ge 0$.

By means of successive exterior differentiations of (1.5), we get the existence of functions $b_1, ..., b_6, c_1, ..., c_8$ such that

(1.7)
$$(da_1 - a_2\omega_1^2 - a_3\tau_1^2) \wedge \omega^1 + (da_2 + a_1\omega_1^2 - a_4\tau_1^2) \wedge \omega^2 = 0$$

$$(da_3 - a_4\omega_1^2 + a_1\tau_1^2) \wedge \omega^1 + (da_4 + a_3\omega_1^2 + a_2\tau_1^2) \wedge \omega^2 = 0 ;$$

(1.8)
$$da_1 - a_2\omega_1^2 - a_3\tau_1^2 = b_1\omega^1 + b_2\omega^2,$$

$$da_3 - a_4\omega_1^2 + a_1\tau_1^2 = b_4\omega^1 + b_5\omega^2,$$

$$da_2 + a_1\omega_1^2 - a_4\tau_1^2 = b_2\omega^1 + b_3\omega^2,$$

$$da_4 + a_3\omega_1^2 + a_2\tau_1^2 = b_5\omega^1 + b_6\omega^2;$$

(1.9)
$$(db_{1} - 2b_{2}\omega_{1}^{2} - b_{4}\tau_{1}^{2}) \wedge \omega^{1} + \{db_{2} + (b_{1} - b_{3})\omega_{1}^{2} - b_{5}\tau_{1}^{2}\} \wedge \omega^{2} =$$

$$= (a_{2}K + a_{3}\mu K^{*})\omega^{1} \wedge \omega^{2},$$

$$\{db_{2} + (b_{1} - b_{3})\omega_{1}^{2} - b_{5}\tau_{1}^{2}\} \wedge \omega^{1} + (db_{3} + 2b_{2}\omega_{1}^{2} - b_{6}\tau_{1}^{2}) \wedge \omega^{2} =$$

$$= (-a_{1}K + a_{4}\mu K^{*})\omega^{1} \wedge \omega^{2},$$

$$(db_{4} - 2b_{5}\omega_{1}^{2} + b_{1}\tau_{1}^{2}) \wedge \omega^{1} + \{db_{5} + (b_{4} - b_{6})\omega_{1}^{2} + b_{2}\tau_{1}^{2}\} \wedge \omega^{2} =$$

$$= (a_{4}K - a_{1}\mu K^{*})\omega^{1} \wedge \omega^{2},$$

$$\{db_{5} + (b_{4} - b_{6})\omega_{1}^{2} + b_{2}\tau_{1}^{2}\} \wedge \omega^{1} + (db_{6} + 2b_{5}\omega_{1}^{2} + b_{3}\tau_{1}^{2}) \wedge \omega^{2} =$$

$$= (-a_{3}K - a_{2}\mu K^{*})\omega^{1} \wedge \omega^{2};$$

(1.10)
$$db_1 - 2b_2\omega_1^2 - b_4\tau_1^2 = c_1\omega^1 + c_2\omega^2 ,$$

$$db_2 + (b_1 - b_3)\omega_1^2 - b_5\tau_1^2 = (c_2 + a_2K + a_3\mu K^*)\omega^1 +$$

$$+ (c_3 + a_1K - a_4\mu K^*)\omega^2 ,$$

$$db_3 + 2b_2\omega_1^2 - b_6\tau_1^2 = c_3\omega^1 + c_4\omega^2 ,$$

$$db_4 - 2b_5\omega_1^2 + b_1\tau_1^2 = c_5\omega^1 + c_6\omega^2 ,$$

$$db_5 + (b_4 - b_6)\omega_1^2 + b_2\tau_1^2 = (c_6 + a_4K - a_1\mu K^*)\omega^1 +$$

$$+ (c_7 + a_3K + a_2\mu K^*)\omega^2 ,$$

$$db_6 + 2b_5\omega_1^2 + b_3\tau_1^2 = c_7\omega^1 + c_8\omega^2 .$$

Of course, we have

(1.11)
$$ds^{2} = (\omega^{1})^{2} + (\omega^{2})^{2},$$

$$ds_{*}^{2} = (\tau^{1})^{2} + (\tau^{2})^{2} =$$

$$= (a_{1}^{2} + a_{3}^{2})(\omega^{1})^{2} + 2(a_{1}a_{2} + a_{3}a_{4})\omega^{1}\omega^{2} + (a_{2}^{2} + a_{4}^{2})(\omega^{2})^{2}.$$

The fundamental invariants of f are

$$(1.12) I_1 = a_1^2 + a_2^2 + a_3^2 + a_4^2, I_2 = (a_1 - a_4)^2 + (a_2 + a_3)^2.$$

The mapping f is called *constant* if $I_1 = 0$; f is said to be *conformal* if $I_2 = 0$; the geometrical signification is obvious. To each point $m \in M$, we get the induced quadratic mapping

$$f_{**}: T_m(M) \to T_{f(m)}(N),$$

$$f_{**}(xv_1 + yv_2) = (b_1x^2 + 2b_2xy + b_3y^2)v_1^* + (b_4x^2 + 2b_5xy + b_6y^2)v_2^*;$$

see [2]. Further, we get the mapping

(1.14)
$$t: M \to T(N), t(m) \in T_{f(m)}(N); t = (b_1 + b_3)v_1^* + (b_2 + b_4)v_2^*;$$

t is the so-called tension field. The expressions

$$(1.15) J_1 = (b_1 + b_3)^2 + (b_4 + b_6)^2, J_2 = b_1^2 + 2b_2^2 + b_3^2 + b_4^2 + 2b_5^2 + b_6^2$$

are invariants of f as well; f is said to be harmonic if $J_1 = 0$, and it is totally geodesic if $J_2 = 0$.

2. Let us produce several integral formulas.

First of all, consider the 1-form

(2.1)
$$\varphi_1 = \{(a_1 - a_4)(b_2 + b_4) - (a_2 + a_3)(b_1 - b_5)\} \omega^1 + \{(a_1 - a_4)(b_3 + b_5) - (a_2 + a_3)(b_2 - b_6)\} \omega^2 ;$$

 φ_1 is invariant. Then

(2.2)
$$\int_{\partial M} \varphi_1 = \int_M \{2L_1 - I_2(K + \mu K^*)\} \omega^1 \wedge \omega^2,$$
where $L_1 = \begin{vmatrix} b_1 - b_5 & b_2 - b_6 \\ b_2 + b_4 & b_3 + b_5 \end{vmatrix}$.

For the invariant form

(2.3)
$$\varphi_2 = \{(a_1 + a_4)(b_2 - b_4) - (a_2 - a_3)(b_1 + b_5)\} \omega^1 + \{(a_1 + a_4)(b_3 - b_5) - (a_2 - a_3)(b_2 + b_6)\} \omega^2,$$

we get

(2.4)
$$\int_{\partial M} \varphi_2 = \int_{M} \{2L_2 + I_3(\mu K^* - K)\} \omega^1 \wedge \omega^2,$$
 where
$$L_2 = \begin{vmatrix} b_1 + b_5 & b_2 + b_6 \\ b_2 - b_4 & b_3 - b_5 \end{vmatrix}$$

and

$$(2.5) I_3 = (a_1 + a_4)^2 + (a_2 - a_3)^2.$$

Further,

(2.6)
$$\frac{1}{2} dI_1 = (a_1b_1 + a_2b_2 + a_3b_4 + a_4b_5) \omega^1 + (a_1b_2 + a_2b_3 + a_3b_5 + a_4b_6) \omega^2,$$

î,e,,

$$(2.7) \frac{1}{2} \int_{\partial M} * dI_1 = \int_{M} \{a_1(c_1 + c_3) + a_2(c_2 + c_4) + a_3(c_5 + c_7) + a_4(c_6 + c_8) + J_2 + I_1 K - 2\mu^2 K^* \} \omega^1 \wedge \omega^2.$$

Analoguously,

(2.8)
$$\frac{1}{2} dI_2 = \{(a_1 - a_4)(b_1 - b_5) + (a_2 + a_3)(b_2 + b_4)\} \omega^1 + \{(a_1 - a_4)(b_2 - b_6) + (a_2 + a_3)(b_3 + b_5)\} \omega^2$$

and

(2.9)

$$\begin{split} &\frac{1}{2} \int_{\partial M} * dI_2 = \int_M \{ (a_1 - a_4)(c_1 + c_3 - c_6 - c_8) + (a_2 + a_3)(c_2 + c_4 + c_5 + c_7) + \\ &+ (b_1 - b_5)^2 + (b_2 + b_4)^2 + (b_2 - b_6)^2 + (b_3 + b_5)^2 + I_2(K + \mu K^*) \} \omega^1 \wedge \omega^2 \,. \end{split}$$
 Next,

(2.10)
$$\frac{1}{2} dI_3 = \{ (a_1 + a_4)(b_1 + b_5) + (a_2 - a_3)(b_2 - b_4) \} \omega^1 + \{ (a_1 + a_4)(b_2 + b_6) + (a_2 - a_3)(b_3 - b_5) \} \omega^2$$

and

(2.11)
$$\frac{1}{2} \int_{\partial M} * dI_3 = \int_M \{(a_1 + a_4)(c_1 + c_3 + c_6 + c_8) + (a_2 - a_3)(c_2 + c_4 - c_5 - c_7) + (b_1 + b_5)^2 + (b_2 - b_4)^2 + (b_2 + b_6)^2 + (b_3 - b_5)^2 + I_3(K - \mu K^*)\} \omega^1 \wedge \omega^2.$$

Finally, consider the invariant 1-form

(2.12)
$$\varphi_3 = \{(b_1 + b_3)(c_5 + c_7) - (b_4 + b_6)(c_1 + c_3)\} \omega^1 + \{(b_1 + b_3)(c_6 + c_8) - (b_4 + b_6)(c_2 + c_4)\} \omega^2.$$

From (1.10), we get

(2.13)
$$d(b_1 + b_3) - (b_4 + b_6) \tau_1^2 = (c_1 + c_3) \omega^1 + (c_2 + c_4) \omega^2,$$
$$d(b_4 + b_6) + (b_1 + b_3) \tau_1^2 = (c_5 + c_7) \omega^1 + (c_6 + c_8) \omega^2.$$

The exterior differentiation yields

$$\begin{aligned} &\{\mathrm{d}(c_1+c_3)-(c_2+c_4)\,\omega_1^2-(c_5+c_7)\,\tau_1^2\}\,\wedge\,\omega^1\,+\\ &+\{\mathrm{d}(c_2+c_4)+(c_1+c_3)\,\omega_1^2-(c_6+c_8)\,\tau_1^2\}\,\wedge\,\omega^2=(b_4+b_6)\,\mu K^*\omega^1\,\wedge\,\omega^2\,,\\ &\{\mathrm{d}(c_5+c_7)-(c_6+c_8)\,\omega_1^2+(c_1+c_3)\,\tau_1^2\}\,\wedge\,\omega^1\,+\\ &+\{\mathrm{d}(c_6+c_8)+(c_5+c_7)\,\omega_1^2+(c_2+c_4)\,\tau_1^2\}\,\wedge\,\omega^2=-(b_1+b_3)\,\mu K^*\omega^1\,\wedge\,\omega^2\,,\\ &\mathrm{and\ the\ existence\ of\ functions}\,e_1,\ldots,e_6\ \mathrm{such\ that} \end{aligned}$$

(2.15)
$$d(c_1 + c_3) - (c_2 + c_4) \omega_1^2 - (c_5 + c_7) \tau_1^2 = e_1 \omega^1 + (e_2 - b_4 \mu K^*) \omega^2,$$

$$d(c_2 + c_4) + (c_1 + c_3) \omega_1^2 - (c_6 + c_8) \tau_1^2 = (e_2 + b_6 \mu K^*) \omega^1 + e_3 \omega^2,$$

$$d(c_5 + c_7) - (c_6 + c_8) \omega_1^2 + (c_1 + c_3) \tau_1^2 = e_4 \omega^1 + (e_5 + b_1 \mu K^*) \omega^2,$$

$$d(c_6 + c_8) + (c_5 + c_7) \omega_1^2 + (c_2 + c_4) \tau_1^2 = (e_5 - b_3 \mu K^*) \omega^1 + e_6 \omega^2.$$

By means of (2.13) and (2.15), we get the integral formula

$$(2.16) \quad \int_{\partial M} \varphi_3 = \int_{M} (2L_3 - J_1 \mu K^*) \, \omega^1 \wedge \omega^2 \,, \quad \text{where} \quad L_3 = \begin{vmatrix} c_1 + c_3 & c_2 + c_4 \\ c_5 + c_7 & c_6 + c_8 \end{vmatrix} \,.$$

3. Let us explain the geometrical interpretation of the invariants L_i . Introduce the invariant operator

$$(3.1) \quad *: T_m(M) \to T_m(M) , \quad m \in M ; \quad *(xv_1 + yv_2) = -yv_1 + xv_2 ;$$

satisfying $\omega(*v) + *\omega(v) = 0$ for $v \in T_m(M)$, $\omega \in T_m^*(M)$. To f_{**} (1.13), consider the associated bilinear mapping

(3.2)
$$\mathcal{L}: T_{m}(M) \times T_{m}(M) \to T_{f(m)}(N),$$

$$\mathcal{L}(x^{1}v_{1} + x^{2}v_{2}, y^{1}v_{1} + y^{2}v_{2}) = (b_{1}x^{1}y^{1} + b_{2}x^{1}y^{2} + b_{2}x^{2}y^{1} + b_{3}x^{2}y^{2})v_{1}^{*} + (b_{4}x^{1}y^{1} + b_{5}x^{1}y^{2} + b_{5}x^{2}y^{1} + b_{6}x^{2}y^{2})v_{2}^{*}.$$

Finally, consider the operator

$$(3.3) \qquad *: T_n(N) \to T_n(N), \quad n \in N; \quad *(\xi v_1^* + \eta v_2^*) = -\eta v_1^* + \xi v_2^*.$$

Lemma 1. Let $v \in T_m(M)$ be an arbitrary unit vector. Then

(3.4)
$$L_1 = \langle \mathcal{L}(v, v) + *\mathcal{L}(v, *v), \ \mathcal{L}(*v, *v) - *\mathcal{L}(v, *v) \rangle,$$
$$L_2 = \langle \mathcal{L}(v, v) - *\mathcal{L}(v, *v), \ \mathcal{L}(*v, *v) + *\mathcal{L}(v, *v) \rangle.$$

Proof. Because of the invariance of L_1 , L_2 and \mathcal{L} , we may choose the frames such that $v = v_1$, i.e., $*v = v_2$ at $m \in M$. Then

$$\mathcal{L}(v_1, v_1) = b_1 v_1^* + b_4 v_2^*,$$

$$\mathcal{L}(v_1, v_2) = b_2 v_1^* + b_5 v_2^*, \quad \mathcal{L}(v_2, v_2) = b_3 v_1^* + b_6 v_2^*,$$

and our Lemma follows. QED.

Lemma 2. Let t(1.14) be the tension field, $v \in T_m(M)$ an arbitrary unit vector and

$$(3.5) V := f_* v , \quad W := f_* (*v) .$$

Then

$$(3.6) L_3 = \langle *\nabla_{\mathbf{v}}^* t, \nabla_{\mathbf{w}}^* t \rangle.$$

Proof. We have

$$\nabla^* t = (b_4 + b_6) (\tau_1^2 - \Omega_1^2) v_1^* + (b_1 + b_3) (\Omega_1^2 - \tau_1^2) v_2^* +$$

$$+ \{ (c_1 + c_3) \omega^1 + (c_2 + c_4) \omega^2 \} v_1^* + \{ (c_5 + c_7) \omega^1 + (c_6 + c_8) \omega^2 \} v_2^* .$$

Notice that, for each form $\Omega \in T^*(N)$ and each vector $v \in T(M)$, we have $f^* \Omega(v) = \Omega(f_*v)$. Set $v = v_1$ at $m \in M$. Then

$$\nabla_{\mathbf{v}}^* t = (c_1 + c_3) v_1^* + (c_5 + c_7) v_2^*, \quad \nabla_{\mathbf{w}}^* t = (c_2 + c_4) v_1^* + (c_6 + c_8) v_2^*,$$

and the Lemma follows. QED.

Lemma 3. Let t(1.14) be the tension field and V, W be defined by (3.5). Let $\varepsilon = \pm 1$. Then

(3.7)
$$\nabla_{V}^{*}t + \varepsilon * \nabla_{W}^{*}t = 0$$

for each $v \in T(M)$ if and only if

(3.8)
$$c_1 + c_3 - \varepsilon(c_6 + c_8) = c_2 + c_4 + \varepsilon(c_5 + c_7) = 0.$$

Proof. Let $v = xv_1 + yv_2$. Then

$$\nabla_{V}^{*}t = \{(c_{1} + c_{3})x + (c_{2} + c_{4})y\}v_{1}^{*} + \{(c_{5} + c_{7})x + (c_{6} + c_{8})y\}v_{2}^{*},$$

$$\nabla_{W}^{*}t = \{(c_{2} + c_{4})x - (c_{1} + c_{3})y\}v_{1}^{*} + \{(c_{6} + c_{8})x - (c_{5} + c_{7})y\}v_{2}^{*}$$

and

$$\nabla_{V}^{*}t + \varepsilon * \nabla_{W}^{*}t = \{c_{1} + c_{3} - \varepsilon(c_{6} + c_{8})\} (xv_{1}^{*} - \varepsilon yv_{2}^{*}) + \{c_{2} + c_{4} + \varepsilon(c_{5} + c_{7})\} (yv_{1}^{*} + \varepsilon xv_{2}^{*}).$$

The Lemma follows easily. QED.

4. Our main task is to obtain several typical geometric consequences of our integral formulas (2.2, 4, 7, 9, 11, 16). In all theorems, M and N are Riemannian manifolds, dim $M = \dim N = 2$, $f: M \to N$ is an orientation preserving mapping, ∂M the boundary of M. All other notions have been explained above.

First of all, let us state the following

Lemma 4. The condition

(4.1) f is harmonic

and/or the condition

(4.2) for each $m \in M$ there is $\dim f_{**}(T_m(M)) \le 1$ and there exists a vector $0 \neq v \in T_m(M)$ such that $f_{**}(v) = 0$

implies

$$(4.3) L_1 \leq 0, L_2 \leq 0.$$

Proof. The condition (4.1) is equivalent to $b_1 + b_3 = b_4 + b_6 = 0$. Hence

$$L_1 = -(b_1 - b_5)^2 - (b_2 + b_4)^2 \le 0$$
, $L_2 = -(b_1 + b_2)^2 - (b_2 - b_4)^2 \le 0$.

From (4.2), we get $-\sec (1.13)$ - the existence of functions ϱ , σ , B_1 , B_2 , B_3 such that

$$b_1 = \varrho B_1$$
, $b_2 = \varrho B_2$, $b_3 = \varrho B_3$, $b_4 = \sigma B_1$, $b_5 = \sigma B_2$, $b_6 = \sigma B_3$

and

$$f_{**}(xv_1 + yv_2) = (B_1x^2 + 2B_2xy + B_3y^2)(\varrho v_1^* + \sigma v_2^*).$$

Further,

$$L_1 = L_2 = (\varrho^2 + \sigma^2)(B_1B_3 - B_2^2),$$

and our Lemma follows. QED.

Theorem 1. Suppose: (i) $L_1 \leq 0$ on M, (ii) K > 0 on M, (iii) $K^* \geq 0$ on $f(M) \subset N$, (iv) $I_2 = 0$ on ∂M . Then f is conformal.

Proof is a direct consequence of (2.2). QED.

Theorem 2. Suppose: (i) M is compact, (ii) $L_2 \leq 0$ on M, (iii) K > 0 on M,

(iv) $K^* \leq 0$ on $f(M) \subset N$. Then f is a constant mapping. We may suppose (i') $J_2 = 0$ on ∂M instead of (i).

Proof. From (2.4), $a_1 + a_4 = a_2 - a_3 = 0$. Hence $\mu = -a_1^2 - a_2^2$; from $\mu \ge 0$, we get $a_1 = a_2 = 0$. QED.

Theorem 3. Suppose: (i) f is harmonic, (ii) $K \ge 0$ on M, (iii) $K^* \le 0$ on $f(M) \subset N$, (iv) $J_2 = 0$ on ∂M . Then f is totally geodesic. Replacing (ii) by (ii') K > 0 on M, f has to be a constant mapping.

Proof is a consequence of (2.7). QED.

Theorem 4. Suppose: (i) for each $v \in T(M)$, we have $\nabla_v^* t + *\nabla_w^* t = 0$, t being the tension field and $V := f_* v$, $W := f_* (*v)$, (ii) K > 0 on M, (iii) $K^* \ge 0$ on $f(M) \subset N$, (iv) $I_2 = 0$ on ∂M . Then f is conformal.

Proof follows from Lemma 3 and (2.9). QED.

Theorem 5. Suppose: (i) for each $v \in T(M)$, we have $\nabla_V^* t + * \nabla_W^* t = 0$, t being the tension field and $V := f_* v$, $W := f_* (*v)$, (ii) $K \ge 0$ on M, (iii) $K^* \ge 0$ on $f(M) \subset N$, (iv) $I_2 = 0$ on ∂M . Then f is harmonic and we have

$$I_2(K + \mu K^*) = 0$$

at each point $m \in M$.

Proof. From Lemma 3 and (2.9),

$$b_1 - b_5 = b_2 + b_4 = b_2 - b_6 = b_3 + b_5 = 0$$

and f is to be harmonic. From (1.10),

$$\begin{aligned} c_1 - c_6 - a_4 K + a_1 \mu K^* &= 0 \,, & c_2 - c_7 + a_2 K + a_3 \mu K^* &= 0 \,, \\ c_2 - c_7 - a_3 K - a_2 \mu K^* &= 0 \,, & c_3 - c_8 + a_1 K - a_4 \mu K^* &= 0 \,, \\ c_2 + c_5 + a_2 K + a_3 \mu K^* &= 0 \,, & c_3 + c_6 + a_4 K - a_1 \mu K^* &= 0 \,, \\ c_3 + c_6 + a_1 K - a_4 \mu K^* &= 0 \,, & c_4 + c_7 + a_3 K + a_2 \mu K^* &= 0 \,. \end{aligned}$$

By the elimination of $c_1, ..., c_8$ from these equations and from (3.8) for $\epsilon = 1$, we get

$$(a_1 - a_4)(K + \mu K^*) = (a_2 + a_3)(K + \mu K^*) = 0,$$

i.e., (4.4). QED.

Theorem 6. Suppose: (i) M is compact, (ii) for each $v \in T(M)$, we have $\nabla_v^* t = *\nabla_w^* t$, t being the tension field and $V := f_*(v)$, $W := f_*(*v)$, (iii) K > 0 on M,

(iv) $K^* \leq 0$ on $f(M) \subset N$. Then f is a constant mapping. Instead of (i), it is sufficient to suppose (i') $J_2 = 0$ on ∂M .

Proof. From Lemma 3 and (2.11), we get $I_3 = 0$, i.e., $\mu = -a_1^2 - a_2^2$. From $\mu \ge 0$, we get $a_1 = a_2 = 0$. QED.

Theorem 7. Suppose: (i) M is compact, (ii) for each $v \in T(M)$, $\nabla_v^* t = *\nabla_w^* t$, t being the tension field and $V := f_*(v)$, $W := f_*(*v)$, (iii) $K \ge 0$ on M, (iv) $K^* \le 0$ on $f(M) \subset N$. Then f is harmonic and we have

$$I_3(K - \mu K^*) = 0$$

at each point $m \in M$. Instead of (i), it is sufficient to suppose (i') $J_2 = 0$ on ∂M .

Proof. From Lemma 3 and (2.11),

$$b_1 + b_5 = b_2 - b_4 = b_2 + b_6 = b_3 - b_5 = 0$$
,

and f is harmonic. From (1.10),

$$c_1 + c_6 + a_4 K - a_1 \mu K^* = 0 , \qquad c_2 + c_7 + a_2 K + a_3 \mu K^* = 0 ,$$

$$c_2 + c_7 + a_3 K + a_2 \mu K^* = 0 , \qquad c_3 + c_8 + a_1 K - a_4 \mu K^* = 0 ,$$

$$c_2 - c_5 + a_2 K + a_3 \mu K^* = 0 , \qquad c_3 - c_5 - a_4 K + a_1 \mu K^* = 0 ,$$

$$c_3 - c_6 + a_1 K - a_4 \mu K^* = 0 , \qquad c_4 - c_7 - a_3 K - a_2 \mu K^* = 0 .$$

The elimination of $c_1, ..., c_8$ from these equations and from (3.8) for $\epsilon = -1$ implies

$$(a_1 + a_4)(K - \mu K^*) = 0$$
, $(a_2 - a_3)(K - \mu K^*) = 0$,

i.e., (4.5). QED.

Theorem 8. Suppose: (i) $L_3 \ge 0$ on M, (ii) $K^* < 0$ on $f(M) \subset N$, (iii) $f_*(T_m(M)) = T_{f(m)}(N)$ for each $m \in M$, (iv) $J_1 = 0$ on ∂M . Then f is a harmonic mapping. Proof. From (2.16), $J_1 = 0$ on M. QED.

Theorem 9. Suppose: (i) M is compact, (ii) $J_1 = \text{const.} \neq 0$ on M, (iii) $K^* > 0$ or $K^* < 0$ on $f(M) \subset N$. Then $\dim f_*(T_m(M)) \leq 1$ for each $m \in M$.

Proof. From $J_1 = \text{const.}$ and (1.10), we get

$$(b_1 + b_3)(c_1 + c_3) + (b_4 + b_6)(c_5 + c_7) = 0,$$

$$(b_1 + b_3)(c_2 + c_4) + (b_4 + b_6)(c_6 + c_8) = 0$$