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A REMARK ON THE DIFFERENTIAL EQUATIONS ON THE SPHERE

Avrois Svec, Olomouc
(Received October 15, 1975)

1. Let S" be the unit-sphere in #"*!. A function f: S" - # is called linear if
f(m) ="<m, a), m being the position vector of S" and a a constant vector. Let g
be the metric tensor of S” and p the covariant differentiation with respect to it.
Introduce the following differential operators for functions on S™:

(1.1) ‘ Af =g'vw,f,
(12) Pf = Af + nf,

| _ det(rw,f) 2.
(1.3) Mf det (g,) + fAf + 1%

4 is, of course, the Laplacian, .# is the so called Weingarten operator. The following
assertion is known: The only solutions f : S* - R of £f = 0 or Mf = 0 resp. are
linear. For the proofs, see, p. ex., [1] and [2]. U. Simon [2] proves the linearity
of solutions of a class of more general operators. In what follows, I propose, for
n = 2, to present another class of operators with the desired property taking in regard
the boundary conditions as well. Namely, I am going to prove the following theorems.

Theorem 1. Let D = S? be a domain, 0D its boundary and f : D - # a function. If

(1.4) Zf=0in D,
(1.5) HAf =0 on oD,
[ is linear.

Theorem 2. Let D — Sz be a domain, 8D its boundary and f : D - & a function.
Let F : # — R be a function satisfying, for each t € X,

(1.6) F(f) > F'(t).(t = F(f)) or F(t)=0 resp.
If v '
(1.7)  Mf=F(%f) in D,
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(1.8) (£f)* — 4F(2f) =0 on oD,

f is linear.
For the omitted details of the proofs, see [3].

2. On S?, consider a domain G which may be covered by a system of tangent
orthonormal frames o = {m, v, v,, v;}. We then have

— ! 2 _ 2 1 2 2
(2.1)  dm =o'y, + 0%v,, dv, = 0iv, + ©'vy, dv, = —wiv, + @%v;,
doy; = — —w'v, — 0,

with the usual integrability conditions. For a function f: G — # introduce the
covariant derivatives f;, f;;, P,..., S, Ty, ..., Ts with respect to o by means of
formulae (2.2), (2.4), (2.6) and (2.8):

(2'2) df =f1w1 +fzw2 5
(23) (df, = f,03) A @' + (df; + fiw]) A 0? =0;
(2-4) df, —fzwf = fl,0' + f1,0?, df, +f1‘0% = f1,0" + fr0%;
(2~5) {dfy: — 2f12wf} A o'+ {dflz +(f11 —fzz)wf} A @ = fLo! A 0?,
{dfxz + (f11 —fzz)wf} A o'+ {dfzz + 2f,2wf} A0t = —fio' A @?;
(2'6) dfy; — zflzwi = Po' + Quw?,
dfi2 + (fus —fzz),wf =(@+f)o' + (R + /1) o?,
df,, + 2f;,0} = Ro' + Sw?;
(27) {dP - (3Q + 2f;)wi} A @' + {dQ + (P — 2R — 2f,) @}} A 0? =
= 2f12(‘01 A wl 3
{dQ + (P — 2R - 2f ) wi} A ©' + {dR + (2Q — S + 2f,) 0}} A 0* =
= 2(f22 - fu)e' A @*,
{dR + 20 — S + 2f;) w3} A @' + {dS + (3R + 2f,) 0} A @* =
= =2f,0' A 0*;
(2.8) dP — (3Q + 2f,) 0} = Tyo' + T,0?,
dQ + (P — 2R = 2f)) 0} = (T, + 2f;,) o' +{Ts + 2f;,) 0?,
dR + (2Q — S + 2f,) 0} = (T; + 2fy,) 0! + (T4 + 2f;,) 02,
dS + (3R + 2f}) 0} = T,0' + T;w?. ‘ '
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It is easy to seé that, in our notation,

(29)  &f=fu+Sfa+2f, M =fifo [l + (i + 22 +]).
From this . .
(210) (Zf) = 4Mf = (fi — 22} + 412 20,
and we have
(211) d&f =P+ R+ 2f)) o' +(Q + S + 2f;) 0?,
dAf = {(f22 + /)P = 2f1,0 + (f11 + /)R + [12f — 2f,f 12} ©' +
+{(f22 + )@ = 2R + (fir + 1) S + f24f — 2f i f12} @
On G, consider the 1-form
(2.12) T ={(fus — f22)(Q + f2) + f12(R = P)} ©' +
+ {11 = f22) R + f1) + f12(5 — Q)} @*.
It may be shown that t does not depend on the choice of the frames . We have
(2.13) dt = =2{® + H(Lf)? — 24f} 0 A ©?
with @ =(Q +/,)(2—-S)+ (R +f)(R—P);

our main tool in proving Theorems 1 and 2 will be the Stokes formula [,, t = [, dr.
First of all, let us prove that thé suppositions of our Theorems imply @ = 0 in D.
Suppose (1.4). Then, see (2.11),

(2.14) P+R+2,=0, Q+S+2f,=0,
and we have

(2.15) ®=20+/)+2R+/)=20.
Next, let ‘

(2.16) ' Mf=0 in D.

Then (2.11,) implies

(2.17) (f22 +f)(P"R)+-?f-(R +f1)_2f12(Q"|'f2)=0,
(/11 +f)(s- Q)+ Zf.(Q+f)—2f1,(R+f)=0.

fet me D be a ﬁxed point; the frames ¢ may be. always chosen in such a way that
L,,(m) = 0. If £f(m) # 0, we have

om) = ()7 + (@ = 5 + (fa + (R - P)’}I..
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Now, quite generally,

(fio + 1) Lf = Mf + o+ (Fra + 1) (faz + ) Lf = Mf + fi2 + (f22 + f),

ie, ®(m) = 0. In the case Lf(m) = 0, there are two possibilities: a) £f = 0 in
a neighborhood of m, b) there is a sequence {m;}, m; - m, such that £f(m,) + 0
for each m, The preceding results prove ®(m) = 0 in these cases, too. Finally,
consider the general supposition of Theorem 2. From (1.7) and (2.11), we get

(2.18) (f22 + /)P = 2f12Q + (fir + f)R + [12f = 2f3f12 —
—F(P+R+2f,)=0,
(fa2 + f) @ = 2f12R + (f11 + /) S + L2 — 2f1f12 —
—-F(Q+S+2f;,)=0,
ie.,
(219) (far+f—F)(P-R) + (Zf —2F)(R + f,) — 2f12(Q + f2) = O,
(i +f=F)(S—0Q) + (£f —2F)(Q + f,) — 2[1,(R + f;) = 0.

Suppose Zf — 2F'(Zf) =0, ie., Mf = F(£f) = {Lf)* + ¢, ¢ =const. The
condition (1.6,) implies }t* + ¢ > #(t — 1), i.e, ¢ > 0. On the other hand, (2.10)
implies —4c = (£f)* — 4.4f 2 0, which is a contradiction. Thus £f — 2F'(Zf) +
+ 0in D. Let m € D be again a point, and suppose f;,(m) = 0. Then

®(m) = (£f = 2F) {(fu + f ~ F)(Q = 8 + (for + f = F)(R = P} |n.
It is easy to verify
(fiu+f—F)(&f—2F)=F*—F .%f + Mf + (f, +f - F)?,
(foa =f—F)(&f—2F)=F*—F .%f + Mf + (f2o + [ — F);
because of (1.7) and (1.6),
(fuu +f—F)(&f—2F)>0, (foa+f—F)(&f-2F)>0,

and @(m) = 0 follows.
By means of (2.10), we get

(2.20) fi1=f22=f12=0 on 9D .

in all cases. Thus © = 0 on D, and we get
(2.21) Ju —fa2=fi2=0 in D
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