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MARTINGALE CONVERGENCE TO THE POISSON DISTRIBUTION

G. K. EAGLEsON, Cambridge
(Received July 1, 1975)

1. INTRODUCTION

Consider a double array of random variables (r.vs), whose rows are martingale
difference sequences, i.e. foreachn =1, 2, ..., we haver.vs X,,;, ..., X,,, on a proba-
bility space (22, #, P) with sub-¢-fields #,, « #,, c ... € F,_ of F such that X,;
is #,; - measurable and E(X,; | #,;-,) = 0almost surely (a.s.)forj = 1,2, ..., k,,
where k, — oo as n — oo. Such arrays are called martingale arrays. Let

Sn = an + ...+ Xnk,.’ 0':_, = E(X3] l 'gn.]"l)’

k
2 2 2
Vi =Y 05, b, =maxoy,;.
j=1 JSkn

j=

A martingale array is called a martingale elementary system if it satisfies

a) EX}; < oo, forall j and n;

b) there exists a finite constant C such that
lim P(V,;, > C) =0;
n— o

and

c) b, »?0 as n - oo.

If the r.vs X,,, ..., X, are independent for each n, then V,,in is a.s. constant and
equal to ES;. The conditions (a), (b) and (c) then constitute the requirements for the
triangular array to form an elementary system (see GNENDENKO [5], p. 316).

A sufficient condition (BROWN and EAGLESON [3]), for the row sums of a martin-
gale elementary system to converge in law to the Poisson distribution with zero mean
and parameter A (written #(4)) is that

() forall e>0, YEX2I(|X, —1|>e¢)|#,;-)—>"0, as n— o,
j .
and ' '

@  YEX|F.-)-Ph, as no .
j

271



The conditions (1) and (2) involve both truncation and conditioning. In this paper,
we will investigate the possibility of removing these difficulties by proving a martingale
analogue of Alda’s ([1]) condition for convergence of the row sums of an elementary
system of independent r.vs to the Poisson distribution.

2. RESULTS

Theorem 1. Let {X,;, #, ;} be a martingale array. The two conditions

(3) ;X,,,-(X,,, —1)>?1 as n- o,

and

4) ZX,fj(X"j - 1) -0 as n> o,
J

together imply (1) and (2).
Proof. First note that

E(j}:Xf;I(IX..; —1>¢g)se? E(;X,f,(X,,j - 1)) -0,

so that (1) follows immediately from (4).
For each n, the sequence of r.vs,

Upy = Xof(Xpj = 1) = E(X,(X; = 1) | Fo ) =
=X, [(Xp; — 1) — E(Xp; | Fnjor)s F=1,..,k,,
is a sequence of martingale differences. Thus
EQU,)* = YE(U3) < YEXafX,; — 1?) > 0.
J J j
So (2) follows from (3).

Corollary 1. If {X,;, #,;} is a martingale array, for which

3 Y XX, —1) P4 as n—> o,

and :

® lm TB, = im TEX,, = im TEXS = .
* then (1) and (2) hold. |

Corollary 2. If {X,;, #,;} is a martingale elementary system satisfying either
(3) and (4) or (3) and (5), then S, —° #(4) as n > oo.

272



Unfortunately, the moment condition (4) or some other, equally strong, moment
condition seems to be indispensible in proving that (3) implies the conditions (1)
and (2). In the reverse direction, most of these moment conditions may be removed
at the cost of more delicate computations.

Theorem 2. Let {X,;, #,;} be a martingale array. The three conditions:

(1) forall &>0, YEXyI(X,; —1]>¢)|F,;-1)-"0 as n— o,
J
) YEXY| #Fuj-1) "2 as n- o,
and '
(6) limY Xy =4,
together imply T
(7) max |X,,,-(X,,j - 1)| -0 as n- ©
and , =
(3) Y X, (X, —1) P4 as n—> .
J

Proof. The proof is divided into a number of lemmas.

Lemma 1. Under the conditions of the Theorem ((1), (2) and ()), for all e,
0<e<i,

(8) lim ;E(X,f,: I(|x,; — 1| > ¢) =0,
©) lim Y E(C 1(X,| <€) = 0.

Proof. Clearly
0 < YEXu I(|Xo| S €)| Fny-1) S
J

= ;E(ijqunf —1|>¢)|F,;-0) = ;E(Xff | #ai-1) -

The hypotheses of the Theorem imply that the last term —” 1, and the two middle
terms —”0, as n — . As (6) holds, the result follows from Pratt’s Theorem [8].
Set M, = max |X,(X,; — 1)|.
jgk’l
Lemma 2. Under the conditions of the Theorem, M, +?0 as n - .

Proof. For fixed ¢ > 0 (e < 3), if |x(x — 1)] > &, then there are neighbour-
hoods N, and N, of 0 and 1 respectively such that x ¢ Ny U N,. Let

n = 4 min (length of Ny, length of N, ).
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Then for all x ¢ Ny U N,,

Ix(x = 1)| = (1 + 77 x>.
Now ’

© PM,>¢)< ;P(|X,,,(X,,j -1 >¢=

S ) DRI

XofXo; = 1) > &) =
S e (1 + 7)) YEXLI(X,; — 1] > n),
i
which tends to zero as n - oo by Lemma 1.

Lemma 3 Under the conditions of the Theorem, for all € > 0
' ;X,,,-(X,,j - 1)I(|X,;| > &) »?0asn - co.
Proof.
'JZXHI(an - DI(|X,| > &) =
<M, ;1(|x,,j| >e) < M2 zjv_xszqx,,j] > €).
But M, —+” 0 and g2 ;X LX) > €)is bounded in probability since its expectation
is bpunded by e72 ZjE(Xf,) < A, where A is a constant independent of n.
Lemma 4. Under the conditions of the Theorem, for all ¢ > 0
,ZX”(X"" - DX, < &) - gE(X,,j(X,,, - DI(X,| S )| £, -1) >0
as n— .
Proof. For each n, the sequencé of r.vs
Wy = XofXoy — DI(Xo| < €) = BX, Xy — DI(X,| < &) | #0j-1)
is a sequence of martingale differences. So
E(sz"f)z = ;E(W.j) = ;E(X:j(X,,, ~ 1) I(lx.u'l <¢).

But (X,;—1)? I(|X,;| < &) < (1 + ¢)*and lim Y E(X7; I(|X,,| < &) = 0 by Lemma 1.
n~o j -
The proof is completed. ' ,
Finally, note that for all n and j E(X,(X,; — 1) | #a,i-1) = E(X2; | #4,5-1), s0
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that combining the results of the above Lemmas, the proof of the Theorem follows
if we establish the following Lemma:
Lemma 6. For all ¢ > 0,
YEX,(X,; — )I(|X,;| > )| #,;-1) 2P0 as n—> .
J

Proof. Fix 6 > 0. Then
|jZE(X,,j(X,,j - D)I(|X,| > & and |X,; - 1] >8)|F,,;-1)| =
S+ e ) YEXL (X, — 1) > 8) | #,,-,) >0
J

by hypothesis.
Also

LEX Xy = DI(|Xy| > 2 and |X,; — 1] £ 8)[F,;-1)
7
< eV YE(XY | F, o) 2P A0,
j

by hypothesis. As 6 may be chosen arbitrarily small, the result follows.

Corollary 3. If {X,;, F,;} is a martingale array satisfying the moment con-
ditions,

(%) lim Y EX}; = lim Y EX}; = lim YEX}, = 1,

n—+o j n—o j n—wo j

then the conditions (1) and (2) together are equivalent to (3).

3. REMARKS

1. Analogous results for convergence to normality were obtained by Scorr [11].
Scott proved the martingale version of Raikov’s Theorem [9] by showing that if
{x, i» F,;} is a martingale array then the conditions

o E(X, ,,'_ - as n—»> o,
(10) YEXz | #aym1) >0 1
J
and

(11)  forall &>0, YEXI(X,;
- .

> &)| #,j-1) >*0 as n—

are equivalent to

(12) YX: »P1 as n- oo,
. - g
and . : :
(13)  maxX% %0 as no oo,
Sk S
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provided the following moment condition holds

(14) lim ;EX:, =1,

Although Scott’s proof in [11] is in terms of a single sequence of martingale
differences, the result is also true for triangular arrays. In fact, looking at Scott’s
proof, one sees that it is possible to prove that (10) and (11) together imply (12)
and (13), and that (12) and (13) together with (14) imply (10) and (11). Thus it would
seem that the martingale version of Lindeberg’s conditions, (10) and (11), are stronger
than the Raikov-type conditions (12) and (13). That this is in fact so has been shown
recently by MCLEISH [6] who proved a martingale central limit theorem under
rather weak moment restrictions.

As the situation for convergence to the Poisson distribution is similar (the con-
ditions (1) and (2) seem to be stronger than (3)) one wonders whether a theorem about
convergence to the Poisson could be proved without using the conditions (1) and (2).

2. At first sight, 1he use of the r.v.

s B

seems a little arbitrary. However, it should be remembered that in a discrete distribu-
tion it is often more natural to use factorial moments, so that (15) might well play
the role of a sample variance. Further, if Y(f), ¢ 2 0, is a Poisson process with para-
meter A, and Z(t) = Y(t) — At, then it is easy to show that if 0 =1, <1, < ...
<ty =1,

3 (20) - 200)) (20) = 2(1-) = 1) 73

as the partition becomes finer i.e., as-max‘]ti - t,_,l - 0.
. i .

3. Though the moment condition (4) may seem excessive, even in the case of in-
dependent {X,;}, (4) together with (6) is necessary and sufficient for the convergence
in law of the row sums to a Poisson r.v. T, and for

1im ES? = ET§ .

(see Brown and Eagleson'[2]).

4. There have been a number of results giving sufficient conditions for the conver-
gence of row sums of arrays of dependent r.vs to the Poisson (see for example,
FREEDMAN [4], MiHAILOV [7] and SEVAST'YANOV [10]), but all of these papers deal
with the special case of 0—1 r.v’s. ' ’
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