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ON THE EXISTENCE OF PERIODIC
BOUNDARY CONDITIONS FOR NONLINEAR SECOND
ORDER DIFFERENTIAL EQUATIONS

BAHMAN MEHRI, Teheran
(Received June 16, 1975)

In this note, we are concerned with the following non-linear second order dif-
ferential equation

(1) x" + Kx = f(t, x, x'),
(&) x(0) = x(@), x(0) = x'(@).

It shall be shown that if certain conditions are imposed on the function f, then
there exists a unique solution of (1) satisfying the boundary conditions (2). In so
doing we shall use a result reported by Durikovi¢ in [1].

If in addition to our assumptions given below, the function f is w-periodic function
of t, i.e.

f(t + o, x,x) = f(t, x, x')

then the result of our paper gives an w-periodic solution (see [3]).

In the sequel it is assumed that:
(Ay) f(t, x, x’) is a real-valued, continuous, bounded function with the domain
E=[0,T] x R%, T>0,

(Az) lf(t, xy, ¥1) — f(t %2, .Vz)l = KZE{le - le + 1/\/|K| l}’1 - hl} , K;>0,

X1 <1.

K|
For w € (0, n/\/K), K > 0, let G(t, 5) be the Green’s function
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[ K(2+s—
t
| cos /. (2 s )

cos\/K<§+t— S)

2K sin\/K%) |

for 0sstfw,

B)  G(ts) =

for 0tsfw,

and, w € (0, + ), K < 0, let G(t, s) be defined as

(4) exp [~ JIK| (t = 9)] - exp [VIK| w] + exp [VIK| (= 9)] ¢ [,
2 J|K|[1 — exp \/|K| o] B

G(t, s) =
exp[~J/|K|(s = O] .exp[VIK| o] + exp [VIK|(s = 0] =,
2 JIK|[1 — exp |K| @] ' -
and K > 0,
sin\/K(%) + 5 — t)
1 for 0ss=st=fo,
sin\/KaE) ’
® G- ‘
sin\/K(—(;3 +t - s)
-1 for 0st<sso,
| 2 ' sin\/Kc—;)
K <0,

(6) exp [VIK| (t = 9] - exp [~ VIK] (1 = 5)] . exp [V/[K] 0] for s<t,

2[1 — exp \/.|K] ]

—exp[V|K|(s = )] + exp[ = VIK|(s = O] - exp [VIK|e] (s,

2[1 - exp J|K| 0]

G(t,s) =

It is easy to see that »
1
K|’

' j‘m|G(t, s)| ds <
0

@ 1
1G(t, s)|ds £ ——.
J ot e =
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Then, the equation (1) together with boundary conditions (2) is equivalent to solving
the integrodifferential equation

) . )= J' :c(:, 9 £(s, x(s), ¥(s)) ds .

With respect to (7), the sequence of Piccard’s successive approximations {x,(t)} 7 is
defined by the equation

(8) x,(1) = J :G(t, 8) £, xu=1(5), Xn-1(s)) ds

and the sequence of derivatives is determined by
© . %) = j 6,08, 9) 15, Fam 1(8)s 2o (51} 45 .
: [}

Theorem 1. Let f(t, x, x) satisfy the assumptions (A,)—(A;z). Then there exists
one and only one solution x(t) of the problem (1) satisfying boundary conditions
(2). Moreover Piccard’® sequence of successive appriximations which is defined
by (8) for any function x(t) specified below converges uniformly to x(t).

Proof. We consider the space .S of all continuous function with continuous first
derivative on [0, T], [0, @] = [0, T]. Let us define the distance

1 ;
[xi(t) = xa(1)] + \/TK| |x3(r) = x3(r)|
(10) max , PER
1e[0,T] |K|’

for arbitrary pair of elements x,(t), x,(f) € S. It is obvious that the set S, on which
the distance is defined by equality (10) is a complete metric space X (see [1]). Let us
define an operator U on X as

ay U x(i) = EG(:, S fie, () 2 (o)ds.

The operator U maps the space X into itself. Moreover

g—t U x(t) = J‘:G,(t, 5) f(s, x(s), x'(s)) ds .

To complete the proof, 'we have to show that all the hypothesis of Luxemburg’s
Theorem 1, [1] are satisfied. Proof of the property 1°. Let x,(t), x,(t) be two arbitrary
functions from the space X, then '

» |U x,(t) = U x,(2)| §A_J‘:|G(t, )| |£(s, x4(s), xi(s)) - f(s, x,(s), .x’z(s))l ds £
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[x1(s) = xa(s)] + = [xils) = x3(s)|
\/l L 'Kl"ds_S_

IS

<K, J.:IG(t, 9)

< —I 2 d(xy, x,) |K|

and

d
— U x,(t
- SUx() 3

T
< $ () = x2(s)] + —— [xi(s) — x3(s)|
-\/|K|f |Gi(t. 5)| | JIK|

Kl =

l”‘zld(xl(’) x5(1)) - |K|p

From the given inequalities, it follows

d(U x,(1), U x,(t)) < %2 d(x,(), x:(1)) .

Thus, the first condition of Theorem 1 is proved. It follows from the définition of the
metric (10) that the arbitrary two elements of S have a finite distance. So conditions 2°
and 3° of Theorem 1, [1] is obvious. Thereby, we have proved the existence and the
uniqueness of the solution of the integro-differential equation (3), and the uniform
convergence of successive approximation (8) to this solution for any function
xo(t) € S:

In the following two theorems, we shall assume K > 0. It is easy to see that G(t, s)
is nonnegative in 0 < s<t < and in 0 <t <s < . Since we(0,n//K),
and hence

sin JK 2 2 E.JKQ
2 = 2
which implies
T
G(t,s) £ —
t.5) 2Kw
and
|Gt 5)| =

NGL .

Now, let us assume that U is the operator defined by (11) and US is the set of all
images S under the mapping U, If we denote the complete metric space which was
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obtained by the completion of the metric space [US, d,] in the sence of the distance
1 ! ’
dy(z,(1), 23(1)) = Max (|z,(z) — 50+ L) - zl(t)l)
z [0,71 JK

by [S*, d,], then the following theorems hold.

Theorem 2. Let f(t, x, y) be a function defined and continuous on E, and let it
fulfil the following conditions

K
(AB) |f(ta_xsy)l§2—ntp’ Péo, (t,x;,V)EE,

(As) |t x45 y1) = £(t, %2, y2)| < L. (|x1 — x|+ [ UK |y — }’2|])

2nt"

for (t,x, y)€E, i =1, 2 where g 21, 0<r <1, r=p(g—-1)

and
1 1 g=1
I <1.
@-r (P + 1)

Then there exists one and only one solution x(t) e S* of problem (1), (2). And
moreover the sequence of Piccord’s approximations defined by (8) for any xo(f) € S
in [0, T] converges umformly on [0 T] to this unique solution.

Proof. The proof will be given similarly as that of Theorem 1. The set S* is
a subset of the set S. On the set we can define the dlstance

- |zl(,)_z;(,)|+;_(‘|z;(,)_z;(,)|
(12) d(z,(8). 2:(9) = max -

1€[0,T] (1

Again the set S*, on which the distance is defined by equality (12) is a complete
metric space X (see [1]). The operator U by (11) maps X into itself. To complete the
proof we have to show all conditions of Luxemburg’s theorem are satisfied. The proof
of condition 1°. Let z,(f), z,(f) be two arbitrary elements of X. Then from (11)
and (A;), we obtain

|zl(‘) = zz(‘)l s — J‘ lG(t s)l sPds < 2(p1+ 5 @®
and .
Hal |21(1) Zz(l)l S ——J' |G,(t s)Is ds < 2( " 1) ” .
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Moreover by (A,) and (12), we obtain

® J2i(s) = @t + | = |405) — 256)| |
U 2,(i) — U z,(t)| < %J [\/K | ] G(t,5)ds <

0 s

et J 1) = 2+ || 186 = 200
i (p+l) "2Ko J o w” e
o’ 1 d(z,(1), z,(1))

2 (p+1)t 11—

IIA

IIA

and similarly

1 d(z (1), 22(1)) )

\/Kl_ 2+ 11—

From the last two inequalities it follows that

_d
— U z,(t
- LU () s

1 1

d(U 2,(1), U z,(1)) = (+1 1t 1—r d(z,(1), za(1) -

Hence Condition 1° is proven. Condition 2° follows directly from (12) because we
have d(x,, x,+;) £ (p +1)"' < o, for n =1,2,.... From (12) we also obtain
Condition (3°) too.

Remark. The assumption (A;) of Theorem (2) guarantees the boundedness of

the function (¢, x, y) in E. In the following theorem we shall show that this assump-
tion is not necessary.

Theorem 3. Let the function f(t, x, y) be continuous in E and let it satisfy the
following conditions

(As) If(t, X, y)l < f—t"’, O<p<1 forall (t,x,y)€eE.

(8 Vexi ) = 5653 5 o0 fry =l + [ e b= ol

and
q—1
( ! ) . ! <1
1-p plg—-1)+1

Then, there exists one and only one solution of problem (1) satisfying boundary
conditions (2), and moreover the sequence of Piccard’s approximations defined
by (8) for arbitrary function x,(t)€ S in te [0, T], converges uniformly on [0, T]
to this unique solution.

Proof. The operator U is defined by relation (11) as in proceeding theorems.
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