

Werk

Label: Article **Jahr:** 1976

PURL: https://resolver.sub.uni-goettingen.de/purl?31311157X_0101 | log70

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

ON THE DENSITY OF THE DILATIONS AND TRANSLATES OF FUNCTION IN L_1

CHARLES KAHANE, Nashville (Received February 28, 1975)

A well known theorem of WIENER [2] asserts that linear combinations of the translates $k(\xi + t)$ of a fixed function $k(\xi)$ in L_1 are dense in L_1 , provided that the Fourier transform of k never vanishes on the real axis. Suppose that in addition to the translates of k we also allow dilations:

(1)
$$k(\delta^{-1}[\xi+t] \quad (\delta>0)$$

and then ask, for which k's is the span of this set of functions dense in L_1 ? Clearly, the span will be dense if k is the characteristic function of an interval — this just amounts to the fact that the class of step functions vanishing outside of a finite interval is dense in L_1 . More generally we have the following result.

Theorem. The necessary and sufficient condition for the set of functions (1) to have a dense span in L_1 is that $\int k(\xi) d\xi \neq 0$.

Proof. The necessity follows from the observation that if $\int k(\xi) d\xi = 0$, then the integral of any linear combination of the functions (1) will also be zero:

$$\int_{j=1}^n a_j k(\delta_j^{-1}[\xi+t_j]) dx = \left(\sum_{j=1}^n a_j \delta_j\right) \int_{\xi} k(\xi) d\xi = 0.$$

Consequently, it would be impossible to approximate any function f in L_1 with a non-vanishing integral by such combinations of the functions (1).

To prove the sufficiency we employ a well-known criterion, based on the Hahn-Banach theorem, for denseness of the span of a set of elements $\mathcal S$ in a normed linear space X (cf. [1], p. 65); namely that the only bounded linear functional on X vanishing for each of the elements of $\mathcal S$ be the identically zero functional. By the Riesz representation theorem, all linear functionals I(f) on L_1 are known to have the form $I(f) = \int f(\xi) g(\xi) d\xi$ where g is a bounded measurable function. It will, therefore, be sufficient to show that if the relations

$$\int k \left(\frac{x - \xi}{\delta} \right) g(\xi) \, \mathrm{d}\xi = 0$$

hold for all x and all $\delta > 0$, then $g(\xi)$ must be zero almost everywhere. In turn, this will be an immediate consequence of the following result regarding approximations of the identity which is of some interest in itself.

Lemma. Let $k \in L_1$ and $g \in L_{\infty}$, then

(2)
$$\lim_{\delta \downarrow 0} \frac{1}{\delta} \int k \left(\frac{x - \xi}{\delta} \right) g(\xi) d\xi = \lim_{\delta \downarrow 0} \frac{1}{\delta} \int k \left(\frac{\xi}{\delta} \right) g(x - \xi) d\xi = g(x) \int k(\xi) d\xi$$

holds on the Lebesgue set of g.

Proof. We recall the definition of the Lebesgue set of g as the set of all points x at which the relation

$$\lim_{\delta \downarrow 0} \frac{1}{\delta} \int_{|\xi| < \delta} |g(x - \xi) - g(x)| \, \mathrm{d}\xi = 0$$

holds.

We will first prove (2) under the additional assumption that k is a bounded measurable function vanishing outside of a finite interval, say $k(\xi) = 0$ for $|\xi| \ge a$. Letting $||k||_{\infty}$ denote the essential supremum of k, a straightforward computation then yields

$$\left|\frac{1}{\delta}\int k(\xi/\delta)\,g(x-\xi)\,\mathrm{d}\xi-g(x)\int k(\xi)\,\mathrm{d}\xi\right| = \frac{1}{\delta}\left|\int_{|\xi|\leq a\delta}k(\xi/\delta)\left[g(x-\xi)-g(x)\right]\,\mathrm{d}\xi\right| \leq$$

$$\leq (a\|k\|_{\infty})\left(\frac{1}{a\delta}\int_{|\xi|\leq a\delta}\left|g(x-\xi)-g(x)\right|\,\mathrm{d}\xi\right);$$

from which (2) follows immediately in this case.

Suppose now that $k \in L_1$. To reduce this situation to the one just considered, we construct a sequence of bounded measurable functions $k^{(n)}$, n = 1, 2, ..., vanishing outside of [-n, +n], and which converge to k in the L_1 norm:

(3)
$$||k^{(n)} - k||_1 \to 0$$
 as $n \to \infty$.

Setting

$$\gamma_n = \int k^{(n)}(\xi) d\xi$$
 and $\gamma = \int k(\xi) d\xi$,

this implies that

$$\gamma_n \to \gamma \quad \text{as} \quad n \to \infty \ .$$