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Let G be a graph. We denote by ¥(G) and E(G) the vertex set of G and the edge
set of G, respectively. If ve V(G), then we denote by deg; v the degree of v in G.
Moreover, we denote by §(G) and 4(G) the minimum degree of G and the maximum
degree of G, respectively. If U is a nonempty subset of V(G), then we denote by (U,
the graph G’ such that ¥(G') = U and

E(G') = {e € E(G); e is incident with no vertex in V(G) — U} .

Let G be a nontrivial connected graph. We say that a set S = E(G) is.a cut set of G,
if the graph G — S is disconnected. A cut set S with IS] = n is referred to as an
n-cut set. We denote by x,(G) the minimum integer k such that there is a k-cut
set of G; the integer %,(G) is called the edge-connectivity of G. (The terms not defined
here can be found in M. BEHzAD and G. CHARTRAND [1].)

It is obvious that for any nontrivial connected graph G, x,(G) < §(G). A suf-
ficient condition for %,(G) = (G) is due to D. R. Lick [3]; note that Lick’s result
is an analogue of R. HALIN’s theorem on the vertex-connectivity [2]. In the present
note it will be shown that an analysis of a nontrivial connected graph from the
point of view of its edge-connectivity can lead to an upper bound for the minimum
degree. In fact, we obtain an upper bound for a more general characteristic: if G is
a graph and U is a nonempty subset of V(G), then we denote

deg; U = min {deg; u; ue U}.

Obviously, 6(G) = deg; V(G).

Let G be a nontrivial connected graph, and let U be a nonempty subset of ¥(G).
We denote f(U) = 4(G,), where G, is the spanning subgraph of (U); with the
property that ee E(G,) if and only if ee E({U)g) and %,(G — e) = x,(G). We
denote by hg(U) the minimum integer i such that there is an i-cut set R, of G with
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the property that for at least one component F, of the graph G — R, it holds that
V(F,) € U. Obviously, x,(G) < hg(U). 1t is clear that if U, and U, are subsets of
V(G) such that @ # U, < U,, then f¢(U,) < f(U,) and hg(U,) £ hg(U,). Denote
fe = f6(V(G)). Clearly, hg(V(G)) = x,(G).

The following theorem is the main result of this note:

Theorem. Let G be a nontrivial connected graph, and let U be a nonempty subset
of V(G). Then

he(U) < degg U < max (fg(U), hg(V)) .

Proof. It is obvious that for each u € U, the set of edges incident with u in G is
a cut set of G. Therefore, hg(U) < degg U _

We shall prove the inequality deg; U < max (fg(U), hg(U)). Clearly, there is
a nonempty subset U, of U such that hs(U,) = hg(U) and that for each nonempty
subset U’ of U, |U’| < |Uo| implies hg(U’) > hg(U). Obviously, U, * V(G). We
denote by F the graph (Uy)g. It is obvious that there is an hg(U)-cut set R of G
such that F is a component of G — R. It is easy to see that E(F) n R = . Denote
n= |Uo|. Obviously,

(1) degs U < degg U, < A(F) + ["G(U):I -1+ M.

(Note that if x is a real number, then [x] denotes the maximum integer j such that
jsx)

Let n < hg(U). If hg(U) < degg U, then it follows from (1) that hg(U). (n — 1) <
< n(n — 1), and thus hg(U) < n, which is a contradiction. Hence degs U < hg(U) <
< max (fg(U), he(U)).

Let hg(U) < n. From (1) it follows that deg; U < 4(F). We distinguish two
cases: ]

() For each ee E(F), %,(G — e) = %,(G). Then f4(U) = A(F). Therefore,
degg U < A(F) £ f6(U) < max (f4(U), hg(U)).

(IT) There exists e € E(F) such that x,(G — e) + %,(G). Then there. exists
a %,(G)-cut set S of G such that e € S. Obviously, the graph G — S has precisely two
components, say G, and G,, and E(G,) n S = 0 = E(G;) n S. We denote by H
the graph G — U, It is easy to see that E(H) n R = 0. Next, we denote V;; = Uy N
AV(G), Viz=Usn¥(Gs), Vay=V(H)AV(G) and ¥y, = V(H) n ¥(G,)
Finally, we denote by

E,,...,Es, and Eg



the set of all e e R U S with the property that e is incident

with V;, and V,,,
with V,, and V,,,
with V;, and V,,,
with V,;, and V,,,

with V,, and V,,,
and

with V;, and V,,,
respectively.

It is clear the sets E,, ..., Es, Eg are mutually disjoint, R = E, U E, U E5 U E¢
and S = E; U E, U Es U Eg. Since E(F)n S #+ 0, we have Vy; % 0 % V;,. Since
V(H) + 0, we have that either V,; + @ or V,, + 0. Without loss of generality we
assume that V,, + 0. We distinguish two subcases:

(1) Vo, = 0. Then E, = E, = Es = 0. Therefore S = E; U Es. This implies
that hg(Vy2) < %,(G) < hg(U), which is a contradiction.

(2) V5, + 0. Then both E, UE, U Es and E;, U Eg U E; are cut sets of G.
Therefore, |E; U E4 U Eg| 2 #,(G) and |E, U E4 U Es| 2 %, (G). Clearly, E, U
U E3 UEs and E; U E; U Eg are also cut sets of G. Since hg(Vy,).> hg(U) and
he(Vi2) > he(U), we have |E; U E; U E| > hg(U) and |E, U E; U E4| > he(U).
Thus 2|R| + 2|S| = 2 hg(U) + 2%,(G) < |E; U E3 U Es| + |E; U E3 U E| + |E; U
UVE,uU E6| + |E2 VE,u E5| < 2|R| + 2|S|, which is a contradiction.

Hence the proof is complete.

Proofs of the following corollaries are omitted:

Corollary 1. Let G be a nontrivial connected graph. Then x,(G) < §(G) =
< max (fg, %,(G)).

Corollary 2. Let G be a nontrivial connected graph, and let U be a nonempty
subset of V(G). If fo(U) < hg(U), then degg U = hg(U).

Corollary 3. Let G be a nontrivial connected graph, and let n be a positive integer
such that n 2 »,(G). Then there exists a vertex u of G such that degg u = n if and

only if there exists a nonempty subset U of V(G) such that fo(U) < hg(U) = n.

Corollary 4. Let G be a nontrivial connected graph. Then 4(G) = %,(G) if and
only if there exists a nonempty subset U of V(G) such that fg(U) < hg(U) = x,(G).
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