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A MODIFICATION OF NEWTON’S METHOD

ViAsTiMIL PTAK, Praha
(Received June 30, 1975)

INTRODUCTION

In a recent paper [2] the author obtained a simple theorem of the closed graph
type, the so-called “Induction Theorem” which gives an abstract model for iterative
existence proofs in analysis and numerical analysis. The induction theorem not only
provides a heuristic method for the.investigation of iterative constructions but also
yields considerable simplifications of proofs.

The induction theorem forms the basis of the method of nondiscrete mathematical
induction described in [8]. The method consists in reducing the given problem to
a set of inequalities for several indeterminate functions one of which is to be a rate
of convergence.

In the present remark we intend to apply the method of nondiscrete mathematical
induction to a modification of Newton’s method due to Jiirgen Moser. The purpose
of the remark is twofold. First of all, the method of nondiscrete induction provides,
we believe, a deeper insight into the essence of the use of approximate solutions of
the linearized equation (obtained, in concrete situations, by means of smoothing
operators or additional viscosities or similar devices). At the same time, Moser’s
theorem provides a good example to illustrate the advantages of the nondiscrete
method.

1. DEFINITIONS AND NOTATION

Let T be an interval of the form T = {t; 0 < t < t,}. A function w mapping T
into itself will be called a rate of convergence if, for each r e T, the series

r+ ofr) + o(o(r) + ao(o(r) + ...

is convergent.
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If w is a rate of convergence we denote by ¢ the sum of the above series. We
observe that ¢ satisfies the functional equation

o(w(r)) + r = o(r).

(1,1) Lemma. Let a be a number with a > 1. Then t \— 1° is a rate of convergence
on the interval 0 < t < 1. For sufficiently small t we have the estimate o(t) < 2t.
More precisely, it suffices to have

t <27
Proof. If '
0<t<g2 V@D

we have t* < 1t and it is easy to see, by induction, that

<)

Hence off) < 2t.

Let (E, d) be a metric space.

An approximate set in E is a family of subsets of E t — W(r), t € T. We define the
limit W(0) of this family as follows

wO) =N (U W) ;
r>0 ssr

hence W(0) is the set of all limits of convergent sequences x, such that x,e W(r,)
for a suitable sequence r, — 0.

If xe E and r > 0 we define

U(x,r) = {z€E; d(z,x) < r}
similarly, if M < E and r > 0,

UM, r) ={zeE; d(z,m) < r for some me M} .

(1,2) The Induction Theorem. Let w be a rate of convergence on T. Let (E, d)
be a complete metric space; for each te T let W(t) be a subset of E. Suppose that,
for eachte T

w(t) = U(W(w(9), 1) ;
then
W(t) = U(W(0), o(?)) .

The proof is simple and straightforward; the theorem is closely related to the
closed graph theorem of Functional Analysis. The proof is given and the relation
to the closed graph theorem explained in the author’s remark [4]. Applications to
existence theorems are given in [3], [2], [6], [7]. The general principles governing

189



the application of the nondiscrete induction method are dlscussed in the author’s
lecture [8] where further examples are given.

Sometimes, it is more convenient to use the induction theorem in the following
equivalent form.

(1.3) Let (E, d) be a complete metric space, let @ be a function which maps
T = (0, to) into itself and such that o™()tends to zero forall t e T. Let ¢ be a posi-
tive increasing function defined on T such that

a,(1) = Lo(@™(1)) < o

-1

for each te T. Then ¢ o w - ¢! is a rate of convergence. Given a family W(t) of

subsets of E such that
, w(1) = U(W(a(1)), o(1))
for each te T, then ,
W(t) = U(W(0), o,(1))
for eachteT.

Proof. Set Z(t) = W(¢~'(t)) and apply the induction theorem to the family Z(-)
and the rate of convergence @ = @ o wo @~ 1.

2. MOSER’S THEOREM

In this section we state and prove a slightly improved version of Moser’s theorem.
There are some formal simplifications in the statement of the theorem and the proof
is considerably simpler.

(2,1) Theorem. Suppose E; = E, = E, are three vector spaces over the complex
field, each equipped with a norm (indexed by the same number). Suppose that the
norm of E, satisfies the inequality

|u|, = c|u lu|, forall ueE,

and a fixed 0 < ¢ < 1 and that the space (E,, ||,) is complete.

Further, let F, < F, be two vector spaces over the complex field, each equipped
" with a norm (indexed by the same number).

Let R be a positive number and let

. Dy={ueEy; |u|, S R}.
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Let D be the closure of D, in the space (E,, |+|,). Let f be a continuous mapping
of (D, |*|,) into (F, |*|o) such that f maps D, into F,. We shall make the following
assumptions about f.

1° (growth) there exist two positive numbers M and S 21 such that
|f(u)|1 < M max (S, lul,) forall ueD,.

2° (approximation by a differential) there exists a mapping g of D, x E,
into F, and a number 8,0 < B < 1 such that

lf(u + v) — f(u) — g(u, v)|0 < M|v|§'” Ivﬂ
whenever both u and u + v belong to D,.

3° (solvability of the linearized equation) there exist two positive numbers A
and p with the following properties

if ueD, and gef(D,) aresuch that

lglo £ m™* where m = max ((1/M)|g|,, [u|,, S) and if Q is any number greater

than 1, there exists at least one v € E, for which
lg(u, v) — glo £ MmQ™*,
|o|: < MmQ,

MO < M|g(u, v)|0.
4° suppose that u > A and :

u+lll_<min(2_ﬁ-l+(/1+1)(u+1) 11—0).

’

Au + p) 4

Then there exists a number & > 0 such that |f(0)|o < & implies the existence
of an element u € D for which f(u) = 0.

Proof. Suppose that u € D, and |f(u)|o £ m™* where
() m 2 max (|u|, S).

Accordingto 1°, we have max (Ju|y, S) 2 |f(«)|./M so that m = max (|f(x)|:/M, |u|,, S).
According to 4°, there exists, for each Q > 1, at least one v € E, such that

|lg(u, v) + f(u)|o < MmQ™* and |v], £ MmQ.
Suppose further that
(2) u+veD,
and let us estimate |f(u + v)|o and [v|o. We have, by 2°
|f(u + v)|o S |f(u + v) — f(u) — g(u, v)|o + |g(u, v) + f(u)|o =
< Mg’ Joff + MmQ™* < M|v|5™? (MmQ) + MmQ™*.
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According to 3° ,
lo|o = Mlg(u, )|o < M(lg(u, v) + f@)]o + |f()]o) <

< M(MmQ™* + m™%).

-

Let us assume further that
6) MmQ™* < m™*.

Under these assumptions it follows that Ivlo < 2Mm~* whence
Ivle <c 2l—¢Mm—A(l—a)+an

|f(u + v)|o < PQ* + qQ7*

where p = M3 227 Pm~*2=P*F and g = Mm.
We shall write 1/r for m. We intend to show that there exists a number a > |
such that

®) qQ™" = ¥
(6 pQ’ =4

for a suitable Q > 1. First of all let us note that condition (5) implies condition (3).
If such a number a exists it is possible to expect that ¢t — t* will be a suitable rate of
convergence. Since |u|; < m = 1/r it is natural to impose further the following con-
dition

i_ 1-a
™ Qs —r

which will ensure the estimate |v|, < 3(1/r)* whence

|u + oy < fuly + |o]s gty 1(1)"
r

2\r

and this will not exceed (1/r)* as soon as

® rs (g)"""” :

Summing up: our task reduces to finding ana > 1 for which there exists a Q satisfying
the following conditions

1<Q
(5) (M) rmCsedie = (2greyin 5
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) Qs -

(6) | Qé(ifg”=

_ = (237PMP) 1P pmGQ2-P=p-ad)p
If there exists an a such that '

(57) Sl P
U
and
(56) Rl L PRI S e,

< e
b . B
then there exists an r(a) with the following property: for each 0 < r < r(a) there

exists a Q > 1 (depending on r) satisfying (5), (6) and (7). Since u > 4, condition
(57) is equivalent to

(57) o>ttt

and condition (56) to

A+ A+ D)(u+1)
Mu + B)
If condition 4° is satisfied, it follows that it is possible to choose an a which satisfies

both (56) and (57).
It follows that

(56) a<2-p

|v[0 <ec 21—0M (%{)a rl(l—a)—aa :

this will tend to zero with r if A(1 — 6) — 6a > 0. Choose a positive & such that
w=2M—0)—0ca—e>01Ifr < (c2'"°M(2M)~°)" /%, we shall have |v|a < re
The new condition to be imposed on a is the following

1—-o0

9) a<a

It follows from condition 4° that (u + 1)/(;1'-— 1) < (1 = o)/ so that a may be
chosen so as to satisfy (56), (57) and (9). Once such a is fixed, for any r < r(a) there
exists a Q > 1 satisfying (5), (6) and (7). Now let -

ro = min (S—l’ r(a), 9= 1/(a—1), (C 21—20M1—u)— 1/:)
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