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THE LYAPUNOV STABILITY
OF THE TIMOSHENKO TYPE EQUATION

JAROSLAV BARTAK, Praha
(Received October 25, 1974)

The purpose of this paper is the investigation of the global exponential stability,
respectively the stability of the zero solution of the equation

(1) u”(t) + au"(t) + (b;AY2 + byI) u'(f) + (c; A2 + ) u'(t) +
+ (dA + d,AY? + d3D)u(t) =0

where A is a selfadjoint, strictly positive linear operator in a Hilbert space H; I is the
identity operator in H; a, by, b,, ¢y, ¢, d;, d,, d; are real constants.

Under the solution of (1) we understand a function u from the space % =
= {u:¢0, ©) > H | u e C(2(u), 2(A“~D*), j =0, 1,2, 3}, fulfilling the equa-
tion (1) on €0, o).

Let us define the norm “ 5 [I B(A) x B(43/4) x D(41/2) x B(41/4) DY the relation

""(‘)" B(A) X D(AY/4) X D(A1/2) X G(AI/4) =
= ([(ult), u(2), u'(1), u'(1))| 24) x B(43/4) x D(A1/2) x D(A1/%) =
([CORAONHONEO)]
= [|4u@|® + |4 @] + |42 w (@) + |4 w"()]?]"

for u € % and t € €0, ), (||+| is the norm in the space H).

Definition 1. We say that the solution v(t) of the equation (1) is stable with respect
to the norm || || 94 x 94374y x 94112 x 34114y if to arbitrarily chosen & > 0 there exists
a 5(g) > 0 so that the following implication holds:

|(0) — 2(0)] 3y x 3arr4y x Ba172) x B4y < 8(E) =
= [u()) — o(1)]| sax sarr x 3av2 x 3419y S €

for t 2 0 and for every solution u(t) of the equation (1).
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Definition 2. We say that the solution v(f) of the equation (1) is exponentially
stable with respect to the norm " L ”9(4))&Q(AJM)XQ(Al/z)xQ(Al/‘) if there exist positive
numbers J, K, o so that the following implication holds:

|4(0) — ©(0)]| au) x 3374 x 312y x 3(a1r0y S & =
—at

= ”“(‘) - ”(‘)”9(A)x9(43/‘)x9(41/2)x9(41/4) < Ke

: ” u(0) — 0(0)” D(A) X D(A3/4) X D(A1/2) x D(AV4)

for t > 0 and for every solution u(t) of the equation (1).
If 6 = + oo in addition, we speak about the global exponential stability.

Let u(f) be a solution of (1) and let the following initial conditions be fulfilled:
&) u(0) = 9o, w(0) = @1, w'(0)=0,, u"(0)=0;,

where ¢, € 2(4*"4),i =0,..., 3.
Let us assume that

(3) the solution of (1) fulfilling (2) is unique.

The problem of the uniqueness is studied in [1], [2].
Let us denote E(s) a spectral resolution of the identity corresponding to the
operator 4, 5 = inf 6(4). By the assumptions on the operator A, we have

4) 6>0.

Let us write the solution of (1) fulfilling (2) in the form (we shall show that this
is possible)

©) )= 3 [ mie9) a86) o,

where m(t, s), (i = 0, ..., 3) are solutions of

6  m™(t,s) + am”(t,s) + (bys'? + by) m'(t, s) +(cy5'% + c;) m'(t, 5) +
+ (dys + dos'? + dy) m(t,s) = 0

fulfilling the initial conditions

) m{®0,s) =&, i,k=0,..3, s;_é.

The symbol of derivative means the derivative with respect to the variable #; s = ¢
is a parameter.
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- ‘Suppose that A, = A,(s), i=1,...,4 are solutions of
(® A%(s) + a 23(s) + (bys'® + by) A%(s) + (cys"? + ¢3) Als) +
+dis+dys'? +dy;=0.

-

For the sake of simplification we shall further use the following notation

(9) b= blsllz + bz, c = clslll +c,, d = d[S 4 dzsllz + d3'
Then
g ! &2 +all+bl+c
(100) mo(t, S) = Z i ” i ' el(l ,
: o i=1
' [T(4 - 4)
j=1
J*i
- & A +al+b
(10,) my(t, s) = :;1 T,
[1(: = 4)
j=1
J*i
52 }s,' + a it
(o) mi9) = 5, 2 o,
: o [T = 4)
J=1
j*i

s 1 At

(10,) my(t, s) = 12’1 g,
o " 16 4)

=1
FEA

It will be advantageous to express the functions mt, s) in the following form:

0

t T
(11,) mo(t, s) = (A} + aAl + b, + c)J' e"('_’)J. 2t~
A : 0
.re"("“)e““ dododr + [A] + 23 + A4, +
0

t o
+a(A, +4) + b]j e“('_")j B0 dodo +
0

0

t
+ (A + A, + A3 + a)J e Dghe gy 4 pht
0
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. - .
(111) ml(t! s) = (A% + all + b)j eax(‘-ﬂJ‘ 812(‘-”) .
0

[}

J P 0 M dodg dr + (A, + A, + a).
0

t a t
J' elz(t—a)j els(q—a)eho dode +J‘ ela(t-v)elae dQ ,

0 0 0

t %
(11,) my(t,s) = (4, + a)f eln(z-qj. =)
(V]

0

o t
j ela(ﬂ-e)eho dQ do dz +-[ elz(t-a) fela(o—o)ehe dg do,

0 0 0

(11,) mu9=j

0

t T 2
NG J. elz(t-ﬂ)f et 4y do dr .
0 0

Lemma 1. Let the following conditions be fulfilled:

(12) a>0,

(13) ;s + ¢, >0 for s26, ¢ >0, _
(14) dis + dysV'?* +dy >0 for s26, d* +d:>0,
(15) a(bys'’* + by) (cys'%+ ¢;) — a*(dys + dys''? + d3) —

— (5" +¢,)*>0 for s29,
(16) abye; — a’dy — 2 > 0.
Then there exists a constant w > 0 such that
(17) Rel(s) £ ~w

for all solutions A(s) of the equation (8) and all s 2 6.

Proof. We can easily derive by means of the Hurwitz theorem that the necessary
and sufficient conditions that the inequality Re A(s) £ —w (for s 2 8) holds are

(18,) —4w +a>0,
(18,) (—4o + a)(6w? — 3aw + b) — (—40® + 3aw? — 2bw + ¢) > 0,
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(185) (40 + a)(6w? — 3aw + b)(—4w® + 3aw® — 2bw + ) —
- (—40 + a)* (0* — a0® + bw? — cw + d) —
- (—40® + 3a0? - 2bw + ¢)* >0,
(184) ' 0* — aw® + bo* —cwo +d > 0;

the inequalities (18) must be fulfilled for all s 2 8. It follows from (12) that the con-
dition (18,) holds for sufficiently small w > 0. (18,) follows immediately from (13),
(14),(185),(18,). The condition (18,) is also fulfilled for sufficiently small @ > 0 because
of (14). Further it follows from (16) that there exists S, = & such that (18,) holds
for s 2 S,. Using (15) we can guarantee also (18,) on the interval [, S,], if we
consider sufficiently small @ > 0 only.

Lemma 1A. Suppose that it holds (12), (13), (14), (15). Then
(19) Re Afs) <0

for all solutions A(s) of the equation (8) and all s 2 6.
Proof. It can be proved that to each S, 2 & there exists @ = o(S,) > 0 such that

(17) holds for all solutions A((s) of the equation (8) and all s €[4, S,] similarly as
in the proof of Lemma 1. This proves Lemma 1A.

Lemma 2. There exists a constant A, > O such that for each solution A(s) of
the equation (8) (which can be written in the form

(20) As)+ar(s)+bAX(s) +cA(s) +d =0
when we use the notation (9)) it holds
1) A6)] 5 At
for s = 6.
Proof. If we put

a
22 fmy-2
(22) y-3

we can transform the equation (20) to

(23) Y tet+fr+g=0
where
3 2
e=b_.3_a2, f=.a__.a_b+c, g=_'ia4+ﬂ)..g£
8 8 2 256 16 4
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All solutions of the equation (23) are:

(24)) y1 =3z + 3% + 23'?),
(24,) 2 =¥z - 22" - z3),
(24;) ys = H—z{"* + z3* - z3%),
(24,) va = 3(-2i"? - z3/* + z}/?),

where z,, z,, z, are solutions of a cubic equation

(25) 23 + 2ez’ + (e —4g)z — f2=0.
We choose values of the square roots such that z1/? . z}/? . z3/> = —f. Let us put
(26) z=x— % e.

Then the equation (25) can be transformed to

(27) x*+3px+29=0
‘where
e2 4 e de :
pum— LW L. €t [
9 3 27 3 2

Let us denote

(28) u=3(-a+ @ +p)), v=(-a- @ +7r).
The square roots are chosen such that uv = —p.
Further let us put ¢ = ¢**/3, Then solutions of the equation (27) are

(29,) X, =u+v,
(29,) x; = &u + &,
(295) x3=¢&u+ev.

Substituting for p, g to (28), we get
(30) u =K' + o(s'?), v=Ks"*+ o(s'?),
where K,, K, are constants and o(f(s)) means any expression such that

im V) _
lim. o =
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We get from (22), (24), (26), (29), (30)
(31) As) = Kis'/* + ofs'/*),i=1,...4,
K, are constants. We can easily find with help of (4) that

(32) to each S, 2 & there exists a constant K(S,) such that |1(s)| < K(S,)6"*
for se[8,S0), i =1,...,4. '

The assertion of the lemma follows immediately from (31), (32). |
Lemma 3. Suppose that
(33) 4 %0,
(34) ) b? —4d, +0.
Then there exist constants A, > 0, Sy = 6 such that
(35) |Als) = Afs)| = Ass'* for s28,, i*j, i,j=1,...,4.
Proof. We use all notations from the proof of Lemma 2. Then
(36) M=y =22+ 22, 2, — Ay =2z{ -z},
Ay = Ay = zM? 4 202 A, — A, =12 — 212,
Ay = Ay = 212 4 23, Ay — Ay = 2y — 232,
So if (35) is to be proved it suffices to prove
(37) (212 4 z}?) 518 22D ag 10, for i+,
(21 = Z/%) s~ L2239 2p w0, for @+ j;

the existence of finite limits is clear, cf. (31).
The conditions (37) will be fulfilled, if

(38) + lim z}/2s~ 14 & lim z}/%s~ Y4, fori # j

s+ s+

(the existence of finite limits is clear again).
Using (26) we get the following sufficient condition that (38) is fulfilled

s+ =+

(39) lim x;s™%% & lim x;s™"2, fori +j,i,j=1,2,3.
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Let us denote

b} 4 b} 4
p=—2_-2d, §=-2+bd,,
P g 3 1 27 %
i =Y(-3+J@ + 7)), 8=Y(-3-J@ +p),
then ; ‘
(40) lim x;s™ "2 =ua + o,
s + o0
lim x,5™ Y2 = eii + &%p,
s+
lim x,s~ Y2 = &% + &b
s=+ o0

It follows from (40): the condition (39) is fulfilled if -
(41) >+ p>+0.

We can easily find that (41) follows from (33), (34).
This proves the lemma.

Proposition 1. Suppose that (12)—(16), (33) (34) hold. Then there exist constants
L> 0, w > 0 such that

(42) Imﬁ")(t, s) s“‘"’/“| < Le™©*
fort 20,§26,i=0,..,3,k=0,...,4.

Proof. It follows from (10), (17), (21), (35) that (42) is fulfilled for s > S,. If we
take into consideration the boundedness of A(s) for se [d, So] and use (11), we
easily prove that (42) holds on [, S,], too.

Proposition 1A. Suppose that (12)—(15), (33), (34) hold. Then there exists
a constant L > 0 such that

(43) |m{(t, s)s¢~2"4| < L
fort20,s26,i=0,...,3,k=0,..,4
Proof. It is similar to the proof of Proposition 1.

It follows immediately from Proposition 1A:
Theorem 1. Let (12)—(15), (33), (34) be fulfilled. Then the function u(t), defined

by the relation (5), is the solution of the equation (1) and fuIﬁls the initial con-
ditions (2).
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Theorem 2. Let (12)—(16), (33), (34) be fulfilled. Then the zero solution of
the equation (1) is globally exponentially stable with respect to the norm

* | B(4) x D(A3/4) x D(A1/2) x D(A1/4)-
Proof. Using (42) we get from (5)

#40)  [4a 5 4§ mal 9 * A w0l + [ e 957

a8 ol + [ Imss ) sl 0 +
3

* J ®|m3(t, 5) s*4[? 572 d[[ E(s) 903'“2} < 4[Le™']*.
L

(|4@o|* + | 404|? + [ 4120,]* + [41*0s|?) =
= 4[Le™ T [[u(0)] 3y x savryx scarray x sarrs -
We can prove similarly
(44) 44 u®()]* < 4 L[e T |u(0)]|Zeay x sasrey x sty x aiarsy »
k=1,273.

If we add (44,)—(44;), we get the global exponential stability of the zero solution.

Theorem 3. Let (12)—(15), (33), (34) be fulfilled. Then the zero solution of the
equation (1) is stable with respect to the norm ||+ || a4 x a(a34) x 3(4172) x 34174y
The proof is similar to that of Theorem 2.

Remark 1. Suppose that v(t) is any solution of the equation (1). Then under
the assumptions of Theorem 2, respectively Theorem 3, v(t) is globally exponentially
stable, respectively stable with respect to the norm |||| D(A) x D(A3/4) X D(AL/Z) x D(AL/4)-

Proof. Let u(t) be a solution of (1). Then the function w(f) = u(r) — »(t) satisfies
equation (1), too. Now our assertion immediately follows from Theorem 2, respec-
tively Theorem 3.

Example. The following problem is often investigated:
(45) 187 U1, X) + ag18; U1, X) — (8 + €3) Upns(t, X) +
+ (1 + cey8;) upt, X) — a€s (1, x) + @ u(t, x) + Uep(t, x) —
— ceyu(t,x) + cu(t,x) =0,
where ¢; > 0, &, > 0, a > 0, ¢ are real constants,

u(t,0) = u(t, 1) = u,,(t,0) = u,(t,n) = 0.
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