

Werk

Label: Article **Jahr:** 1976

PURL: https://resolver.sub.uni-goettingen.de/purl?31311157X_0101 | log39

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

ČASOPIS PRO PĚSTOVÁNÍ MATEMATIKY

Vydává Matematický ústav ČSAV, Praha SVAZEK 101 * PRAHA 17. 5. 1976 * ČÍSLO 2

ON SOME LINEAR VOLTERRA DELAY EQUATIONS

Jiří Cerha, Praha (Received June 6, 1973)

The L^p -solutions of the equation

(I)
$$x(t) = a(t) + \int_0^t B(t, s) x(\mu(s)) ds$$

with $\mu(t) \leq t$ are investigated. R. K. MILLER has constructed the resolvent kernel of (I) with $\mu(t) = t$ in [9] using Picard successive approximation method. Using this kernel, an explicit formula for the solution x of (I) corresponding to the right-hand side a is available. Similarly, we shall find the resolvent kernel R of (I) in general case solving the resolvent equation

(R)
$$R(t,s) = B(t,s) + \int_{s}^{t} B(t,u) R(\mu(u),s) du$$

or

(R')
$$R(t, s) = B(t, s) + \int_{-\infty}^{t} R(t, u) B(\mu(u), s) du$$
.

This kernel enables us to express the solution x of (I) using the explicit resolvent formula

(X)
$$x(t) = a(t) + \int_0^t R(t, s) a(\mu(s)) ds.$$

Modifying this method, similar results for continuous solutions and for the solutions of more complicated equation

(î)
$$x(t) = a(t) + \int_0^t \sum_{\alpha} B^{\alpha}(t, s) x(\mu^{\alpha}(s)) ds$$

will be shown. The continuous dependence of x on the kernel B and the delay function μ is investigated in the second part. The equations considered comprise the linear cases of the differential delay equations introduced by L. E. ELŚGOLĆ

and S. B. NORKIN in [6] and many of the cases introduced by A. B. Myškis in [10]. We may also find close relationships to some linear cases of the functional differential equations investigated by J. HALE in [8].

1. EXISTENCE AND UNICITY THEOREMS

1. Notation. We shall fix an integer $n \ge 1$, real numbers τ , T; $\tau \le 0 < T$; real numbers p, q; $1 \le p \le \infty$, $1 \le q \le \infty$; 1/p + 1/q = 1. $|\cdot|$ will be the Euclidean norm of matrices. We put $J = \langle \tau, T \rangle$. We shall write

$$||f||_{r} = \left(\int_{J} |f|^{r} \right)^{1/r}, \quad 1 \le r < \infty ;$$
$$||f||_{\infty} = \text{vrai sup } |f(t)|$$

for a matrix-valued (Lebesgue) measurable function f on J. $f \circ \mu$ will be the composition of functions f, μ ;

$$(B \circ \mu) (t, s) = B(\mu(t), s); \quad t, s \in J;$$

$$\|B\|_{r,s} = \left[\int_{J} \left(\int_{J} |B(t, u)|^{s} du \right)^{r/s} dt \right]^{1/r}; \quad 1 < r < \infty, \quad 1 < s < \infty;$$

$$\|B\|_{r,s} = \left[\int_{J} \left(\int_{J} |B(t, u)|^{r} dt \right)^{s/r} du \right]^{1/s}; \quad 1 < r < \infty, \quad 1 < s < \infty;$$

$$\|B\|_{r,\infty} = \left[\int_{J} (\text{vrai sup } |B(t, s)|)^{r} dt \right]^{1/r}, \quad 1 < r < \infty;$$

$$\|B\|_{\infty,s} = \text{vrai sup} \left(\int_{J} |B(t, u)|^{s} du \right)^{1/s}, \quad 1 < s < \infty.$$

for a measurable function B on the cartesian product $J \times J$ and a function $\mu: J \to J$.

- 2. μ -assumptions. Let
- (2,1) $\mu: J \rightarrow J$;
- (2,2) μ be a measurable function on J;
- (2,3) $\tau \leq \mu(t) \leq t$ for all $t \in J$.
 - 3. B-assumptions. Let
- (3,1) B be a finite complex $n \times n$ -matrix-valued function defined for all points of the interval $J \times J$;

- (3,2) B(t, s) = 0 for s < 0 or s > t;
- (3,3) B be measurable on $J \times J$;
- (3,4) $B \circ \mu$ be measurable on $J \times J$;
- $(3,5) |B(t,s)| \leq g(t) h(s); t, s \in J;$
- $(3,6) |B(\mu(t), s)| \leq g(t) h(s); t, s \in J,$

where the real functions g, h satisfy $||g||_p < \infty$, $||h||_q < \infty$. We shall sometimes use weaker assumptions

- (3,7) $||B(t, \cdot)||_q < \infty$, $||B(\mu(\cdot), t)||_p < \infty$, $t \in J$;
- $(3,8) \|B\|_{p,q} < \infty;$
- $(3.9) \|B\circ\mu\|_{p,q}<\infty;$
- (3,10) $||B \circ \mu||^{p,q} < \infty;$

instead of (3,5-6), if $1 < p, q < \infty$.

4. a-assumptions. Let

- (4,1) a be an n-dimensional vector function (column-matrix) defined on J;
- (4,2) a be measurable on J;
- $(4,3) \|a\|_p < \infty;$
- (4,4) $a \circ \mu$ be measurable on J;
- $(4,5) \|a \circ \mu\|_{p} < \infty.$
 - **5. Definition.** \mathcal{M} will denote the set of all μ satisfying (2,1-3). Let $\mu \in \mathcal{M}$.

$$\mathbf{B} = \mathbf{B}_n^{p,\mu}(J)$$

will be the set of all B satisfying (3,1-6) and, if 1 < p,

$$\tilde{\mathbf{B}} = \tilde{\mathbf{B}}_n^{p,\mu}(J)$$

the set of all B satisfying (3,1-4), (3,7-10).

$$\mathbf{L} = \mathbf{L}_n^{p,\mu}(J)$$

will be the set of the functions a satisfying (4,1-5). We shall write shortly L^p if $\mu(t) = t$. The solution of the equation (I) will be a function $x \in L$ satisfying (I) for all $t \in J$.

6. Remark. We get immediately $\mathbf{B} \subset \mathbf{\bar{B}}$ for 1 from Definition 5. It

follows from the equation (I) that its solution x is independent of the values $\mu(t)$ for t < 0. We have introduced these values only for easier formulations.

We find some essential differences comparing the equation (I) with the classical case $\mu(t) = t$. Let us note that supposing measurability or integrability of a function f, we do not generally get the same property for the composition $f \circ \mu$. Hence the assumptions (3,4), (3,6) e.t.c. are necessary. It is also worth mentioning that changing a value x(t) of a solution x of (I) at one point we may get a function that does not satisfy (I) for the elements of a nonzero set, for some μ . Hence it is not sufficient to define x, a, $B(\cdot, s)$ only almost everywhere. However, the functions μ , $B(t, \cdot)$ may be defined only almost everywhere.

7. Theorem. Let $\mu \in \mathcal{M}$, $B \in \tilde{\mathbf{B}}$. Then there exists a resolvent kernel $R \in \tilde{\mathbf{B}}$ satisfying (R), (R') for all $t, s \in J$.

Proof. We prove the theorem using Picard successive approximation method. (Cf. [9].) We introduce these approximations by

(7,1)
$$R_0(t,s) = B(t,s),$$

$$R_{v+1}(t,s) = \int_s^t B(t,u) R_v(\mu(u),s) du; \quad v = 0, 1, 2, ...; \quad t, s \in J.$$

We shall prove by induction that:

(i) the definition (7,1) is a good one;

(ii)
$$R_{\nu+1} \in \mathbf{B},$$

(iii)
$$R_{\nu+1}(t,s) = \int_{s}^{t} R_{\nu}(t,u) B(\mu(u),s) du$$
,

(iv)
$$|R_{\nu+1}(t,s)| \leq \xi(t)^{1/q} \eta(s)^{1/p} [\zeta(t,s)^{\nu}/\nu!]^{1/p}$$

where

$$\xi(t) = \int_0^t |B(t,s)|^q \, ds \,, \quad \eta(s) = \int_s^t |B(\mu(t),s)|^p \, dt \,, \quad \zeta(t,s) = \int_s^t \xi(\mu(u))^{p/q} \, du$$

for $t, s \in J$; $v = 0, 1, 2, \ldots$ Let firstly v = 0. Using the Hölder inequality we obtain

$$\int_{s}^{t} |B(t, u)| |B(\mu(u), s)| du \le$$

$$\le \left(\int_{s}^{t} |B(t, u)|^{q} du \right)^{1/q} \left(\int_{s}^{t} |B(\mu(u), s)|^{p} du \right)^{1/p} \le \xi(t)^{1/q} \eta(s)^{1/p}.$$

Hence the definition (7,1) is a good one, (iv) holds, R_1 satisfies (3,1-4) and (3,7-10) and we obtain (ii). Clearly (iii) holds as well. Let now $v \ge 1$ and let the assertions (i)-(iv) hold for the indices $\alpha \le v - 1$. Using the induction predicate and the Hölder inequality we get

$$\int_{s}^{t} |B(t, u)| |R_{\nu}(\mu(u), s)| du \leq \left(\int_{s}^{t} |B(t, u)|^{q} du\right)^{1/q} \left(\int_{s}^{t} |R_{\nu}(\mu(u), s)|^{p} du\right)^{1/p} \leq$$

$$\leq \xi(t)^{1/q} \left[\int_{s}^{t} \xi(\mu(u))^{p/q} \frac{\zeta(\mu(u), s)^{\nu-1}}{(\nu - 1)!} du\right]^{1/p} \eta(s)^{1/p} \leq$$

$$\leq \xi(t)^{1/q} \left[\int_{s}^{t} \xi(\mu(u))^{p/q} \frac{1}{(\nu - 1)!} \left[\int_{s}^{u} \xi(\mu(v))^{p/q} dv\right]^{\nu-1} du\right]^{1/p} \eta(s)^{1/p} \leq$$

$$\leq \xi(t)^{1/q} \left[\frac{\zeta(t, s)^{\nu}}{\nu!}\right]^{1/p} \eta(s)^{1/p}.$$

Now we follow the argument of the first induction step. (iii) follows from the relations

$$R_{\nu+1}(t,s) = \int_{s}^{t} B(t,u) \int_{s}^{u} R_{\nu-1}(\mu(u),v) B(\mu(v),s) dv du =$$

$$= \int_{s}^{t} \int_{v}^{t} B(t,u) R_{\nu-1}(\mu(u),v) du B(\mu(v),s) dv = \int_{s}^{t} R_{\nu}(t,v) B(\mu(v),s) dv.$$

Let us put

(7,2)
$$\widetilde{R}(t,s) = \sum_{\nu=1}^{\infty} R_{\nu}(t,s) .$$

The function \tilde{R} is defined on the whole interval $J \times J$ and satisfies

$$|\widetilde{R}(t,s)| \leq c \, \xi(t)^{1/q} \, \eta(s)^{1/p} .$$

Similarly,

$$|\tilde{R}(\mu(t),s)| \leq c \, \xi(\mu(t))^{1/q} \, \eta(s)^{1/p} \, .$$

Now, if $R = \tilde{R} + B$ then $R \in \tilde{B}$ and using the Lebesgue theorem we get

$$\int_{s}^{t} B(t, u) R(\mu(u), s) du = \int_{s}^{t} \sum_{v=0}^{\infty} B(t, u) R_{v}(\mu(u), s) du =$$

$$= \sum_{v=0}^{\infty} \int_{s}^{t} B(t, u) R_{v}(\mu(u), s) du = \sum_{v=1}^{\infty} R_{v}(t, s) = R(t, s) - B(t, s).$$

Hence (R) holds. We prove (R') similarly using (iii).

8. Remark. There exists $R \in \mathbf{B}$ satisfying (R), (R') and the inequalities

$$|R(t,s)|, |R(\mu(t),s)| \leq \varkappa g(t) h(s)$$

for $B \in \mathbf{B}$, where \varkappa depends only on the functions g, h corresponding to B according to the relations (3,5-6). The proof is similar to that of Theorem 7. We obtain for the successive approximations

$$|R_{\nu}(t,s)|, |R_{\nu}(\mu(t),s)| \leq g(t) h(s) f_{\nu}(t,s)$$

where

$$f_{\nu}(t,s) = \frac{1}{\nu!} \left(\int_{s}^{T} g^{p} \right)^{\nu/p} \left(\int_{0}^{t} h^{q} \right)^{\nu/q}, \quad 1
$$\frac{1}{\nu!} \left(\int_{0}^{t} h \right)^{\nu}, \quad p = \infty,$$

$$\frac{1}{\nu!} \left(\int_{0}^{t} g \right)^{\nu}, \quad p = 1.$$$$

9. Theorem. Let $\mu \in \mathcal{M}$, $B \in \mathbf{B}$ or $B \in \mathbf{B}$; $a \in \mathbf{L}$. Then there exists a unique solution $x \in \mathbf{L}$ of the equation (I). This solution is given by (X), where R is the corresponding resolvent kernel.

Proof. Let us define x by (X). Then

$$\int_{0}^{t} B(t, s) x(\mu(s)) ds = \int_{0}^{t} B(t, s) \left[a(\mu(s)) + \int_{0}^{\mu(s)} R(\mu(s), u) a(\mu(u)) du \right] ds =$$

$$= \int_{0}^{t} B(t, u) a(\mu(u)) du + \int_{0}^{t} \int_{u}^{t} B(t, s) R(\mu(s), u) ds a(\mu(u)) du =$$

$$= \int_{0}^{t} R(t, u) a(\mu(u)) du$$

in virtue of (R). Hence x fulfils (I). If the couple x, a satisfies (I) it satisfies also (X) because -B is the resolvent kernel corresponding to -R. So we get the unicity.

- 10. Example. For $t \mu(t) \ge c > 0$, $t \in J$, we get a finite number of approximations for the resolvent kernel evaluation. We may also simply compute the solution x provided that μ is a step function e.t.c.
 - 11. Remark. Let $1 , <math>B \in \mathbf{B}_n^{p,\mu}(J)$,

(11,1)
$$\int_{J} |B(t,s) - B(u,s)|^{q} ds \to 0, \quad u \to t; \quad u,t \in J.$$

Then the resolvent kernel also fulfils (11,1) and for continuous a the solution x of (I) is continuous as well. Using Carathéodory condition for the measurability of a composed function (see e.g. M. M. VAJNBERG [12]) we may prove the following more general assertion.

- 12. Theorem. Let $\mu \in \mathcal{M}$, let the kernel B satisfy (3,1-2) and
- (12,1) $B(t, \cdot)$ is measurable on J for all $t \in J$;
- (12,2) $|B(t,s)| \leq h(s)$; $t, s \in J$ where $h \in L^1$;

(12,3)
$$\int_{J} |B(u,s) - B(t,s)| ds \to 0 \quad \text{for} \quad u \to t \; ; \quad u,t \in J \; .$$

Let a be continuous on J. Then the equation (I) has a unique solution x continuous on J.

- 13. Remark. A function B continuous on $J \times J$ satisfies (12,1-3).
- 14. The more general case. Now we generalize the previous results to the equation (î). Let \mathscr{A} be a countable set, $\mu^{\alpha} \in \mathscr{M}$ for all $\alpha \in \mathscr{A}$. Let $\alpha_0 \in \mathscr{A}$, $\mu^{\alpha_0}(t) = t$, $t \in J$. Let B^{α} be a kernel satisfying (3,1-2) for all $\alpha \in \mathscr{A}$ and let
- (14,1) $B^{\alpha}(\mu^{\beta}(t), s)$ be a measurable function on $J \times J$;

$$(14,2) |B^{\alpha}(\mu^{\beta}(t),s)| \leq g^{\beta}(t) h^{\alpha}(s); \quad t,s \in J;$$

for all $\alpha, \beta \in \mathcal{A}$ where

$$G \equiv \left(\sum \left\|g^{\beta}\right\|_{p}^{p}\right)^{1/p} < \infty$$
 , $H \equiv \left(\sum_{\beta} \left\|h^{\beta}\right\|_{q}^{q}\right)^{1/q} < \infty$.

(We put $G = \sup_{\beta} \|g^{\beta}\|_{\infty}$ if $p = \infty$ e.t.c.) We denote $B = \{B^{\alpha}\}$ the system of this kernels, $\hat{\mathbf{B}}$ the family of this systems. Let $\hat{\mathbf{L}}$ be the set of functions satisfying (4,1-2) and the assumptions:

(14,3) $a \circ \mu^{\alpha}$ is measurable for all $\alpha \in \mathcal{A}$;

(14,4)
$$||a||_{p,\mu} \equiv (\sum ||a \circ \mu^{\alpha}||_{p}^{p})^{1/p} < \infty$$
.

(We put $||a||_{p,\mu} = \sup_{\alpha} ||a \circ \mu^{\alpha}||_{\infty}$ if $p = \infty$.) We shall consider the equation

(1)
$$x(t) = a(t) + \int_0^t \sum_{\alpha} B^{\alpha}(t, s) \ x(\mu^{\alpha}(s)) \ ds$$

and seek a system $R = \{R^{\alpha}\}\$ of resolvent kernels satisfying the resolvent equations

$$(\hat{\mathbf{R}}) \qquad \qquad R^{\alpha}(t,s) = B^{\alpha}(t,s) + \int_{s}^{t} \sum_{\beta} B^{\beta}(t,u) R^{\alpha}(\mu^{\beta}(u),s) du,$$

$$(\hat{\mathbf{R}}') \qquad \qquad R^{\alpha}(t,s) = B^{\alpha}(t,s) + \int_{s}^{t} \sum_{\beta} R^{\alpha}(t,u) B^{\beta}(\mu^{\beta}(u),s) du$$

for all $\alpha \in \mathcal{A}$. The corresponding resolvent formula for the solution x will be of the form

$$(\hat{\mathbf{X}}) \qquad x(t) = a(t) + \int_0^t \sum_{\beta} R^{\beta}(t, s) \ a(\mu^{\beta}(s)) \ \mathrm{d}s \ , \quad t \in J \ .$$

15. Theorem. Let $B = \{B^{\alpha}\} \in \hat{\mathbf{B}}$. Then there exists a system $R = \{R^{\alpha}\} \in \hat{\mathbf{B}}$ of resolvent kernels satisfying (R), (R') and the inequalities

$$|R^{\alpha}(\mu^{\beta}(t), s)| \leq c g^{\beta}(t) h^{\alpha}(s); \quad t, s \in J; \quad \alpha, \beta \in \mathscr{A};$$

where the constant c depends only on the functions g^{γ} , h^{δ} , γ , $\delta \in \mathcal{A}$.

Proof. We may define the systems of resolvent kernels by the formulas

$$R_0^{\alpha}(t,s)=B^{\alpha}(t,s),$$

$$R_{\nu+1}^{\alpha}(t,s) = \int_{s}^{t} \sum_{\beta} B^{\beta}(t,u) R^{\alpha}(\mu^{\beta}(u),s) du \; ; \; t,s \in J \; ; \; \alpha \in \mathscr{A} \; ; \; \nu = 0,1,2,...$$

similarly to the case of the equation (I) (see Remark 8). These systems belong to **B** and it holds

$$\left|R_{\nu}^{\alpha}(\mu^{\beta}(t), s)\right| \leq g^{\beta}(t) h^{\alpha}(s) w_{\nu}(t)$$

where

$$w_{\nu}(t) = \left\langle \frac{\left[\left(G\sum_{\beta}\int_{0}^{t}(h^{\beta})^{q}\right)^{\nu}\right]^{1/q}}{\nu!} \text{ if } 1
$$\frac{\left(H\sum_{\beta}\int_{0}^{t}g^{\beta}\right)^{\nu}}{\nu!} \text{ if } p = 1.$$$$

The system of resolvent kernels satisfying the assertion of the theorem may be defined by

$$R^{\alpha} = \sum_{i=0}^{\infty} R^{\alpha}_{i}, \quad \alpha \in \mathscr{A}.$$

16. Theorem. Let $B = \{B^{\alpha}\} \in \hat{\mathbf{B}}$. $R = \{R^{\alpha}\}$ be the corresponding system of re-

solvent kernels, $a \in \hat{L}$. Then the equation (\hat{I}) has a unique solution $x \in \hat{L}$. This solution is given by the resolvent formula (\hat{X}) .

Proof is analogous to that of Theorem 9.

2. CONTINUITY

1. Lemma. Let $b \in \mathbf{B}_1^{p,\mu}$; $f, z \in \mathbf{L}_1^{p,\mu}$; $b \ge 0$; let r be the resolvent kernel corresponding to the kernel b. Then $r \ge 0$ and the inequality

(1,1)
$$z(t) \leq f(t) + \int_0^t b(t,s) \, z(\mu(s)) \, \mathrm{d}s \, , \quad t \in J \, ,$$

implies

(1,2)
$$z(t) \leq f(t) + \int_0^t r(t,s) f(\mu(s)) ds, \quad t \in J.$$

Moreover, there exists a constant c > 0 dependent only on the functions g_b , h_b so that (1,1) and the assumption $z \ge 0$ imply

$$||z||_{p} \leq ||f||_{p} + c||f \circ \mu||_{p}, \quad ||z \circ \mu||_{p} \leq c||f \circ \mu||_{p}.$$

Proof. We obtain $r \ge 0$ from $b \ge 0$ and the successive approximation method. Hence and from (1,1) it follows

(1,4)
$$z(t) + \int_0^t r(t, u) z(\mu(u)) du \le f(t) + \int_0^t r(t, u) f(\mu(u)) du + \int_0^t b(t, s) z(\mu(s)) ds + \int_0^t r(t, u) \int_0^{\mu(u)} b(\mu(u), s) z(\mu(s)) ds du.$$

Let us denote the last integral by U. Replacing the upper limit $\mu(u)$ by u and using the resolvent formula we get after simple calculation

$$U = \int_0^t [r(t, s) - b(t, s)] z(\mu(s)) ds.$$

Hence and from (1,4), (1,2) follows. (1,2) implies (using also $z \ge 0$)

$$||z||_{p} \le ||f||_{p} + ||f \circ \mu||_{p} ||h_{r}||_{q} ||g_{r}||_{p},$$

$$||z \circ \mu||_{p} \le ||f \circ \mu||_{p} + ||f \circ \mu||_{p} ||h_{r}||_{q} ||g_{r}||_{p}.$$

We obtain (1,3) from here and Remark 8 of the first part.

2. Lemma. Let $B \in \mathbf{B}_{n}^{p,\mu}$, $a \in \mathbf{L}_{n}^{p,\mu}$. Then $|B| \in \mathbf{B}_{1}^{p,\mu}$; |B|, $|B(\mu(\cdot), \cdot)| \in \mathbf{B}_{1}^{p,1}$, $|a| \in \mathbf{L}_{1}^{p,1}$

and we may choose $g_{|B|} = g_B$, $h_{|B|} = h_B$. If, moreover, x is a solution of (I), then there exists a constant c > 0 depending only on g_B , h_B so that

$$||x||_p \le ||a||_p + c||a \circ \mu||_p$$
, $||x \circ \mu||_p \le c||a \circ \mu||_p$.

Proof follows from Lemma 1.

3. Lemma. Let $\lambda, \mu \in \mathcal{M}, a \in \mathbf{L}_n^{p,\mu} \cap \mathbf{L}_n^{p,\lambda}, B \in \mathbf{B}_n^{p,\mu} \cap \mathbf{B}_n^{p,\lambda}, g \in \mathbf{L}^p, h \in \mathbf{L}^q$

$$(3,1) |B(t,s)|, |B(\mu(t),s)|, |B(\lambda(t),s)| \leq g(t) h(s); t, s \in J;$$

let x be a solution of (I), y a solution of the equation

(3,2)
$$y(t) = a(t) + \int_0^t B(t,s) y(\lambda(s)) ds, \quad t \in J.$$

Then there exists a constant c depending only on the functions g, h so that it holds

$$(3,3) ||x-y||_p \le c[||a \circ \mu - a \circ \lambda||_p + ||B \circ \mu - B \circ \lambda||_{p,q} (||a \circ \mu||_p + ||a \circ \lambda||_p)],$$

(3,4)
$$||x \circ \mu - y \circ \lambda||_{p} \leq$$

$$\leq c[||a \circ \mu - a \circ \lambda||_{p} + ||B \circ \mu - B \circ \lambda||_{p,q} (||a \circ \mu||_{p} + ||a \circ \lambda||_{p})].$$

Proof. We get

(3,5)
$$x(t) - y(t) = \int_0^t B(t,s) \left[x(\mu(s)) - y(\lambda(s)) \right] ds ,$$

$$(3,6) x(\mu(t)) - y(\lambda(t)) = a(\mu(t)) - a(\lambda(t)) +$$

$$+ \int_{0}^{\mu(t)} B(\mu(t), s) x(\mu(s)) ds - \int_{0}^{\lambda(t)} B(\lambda(t), s) y(\lambda(s)) ds =$$

$$= a(\mu(t)) - a(\lambda(t)) + \int_{0}^{\mu(t)} [B(\mu(t), s) - B(\lambda(t), s)] x(\mu(s)) ds +$$

$$+ \int_{0}^{\mu(t)} B(\lambda(t), s) [x(\mu(s)) - y(\lambda(s))] ds - \int_{\mu(t)}^{\lambda(t)} B(\lambda(t), s) y(\lambda(s)) ds$$

from (I) and (3,2). Let us put (for $t, s \in J$)

$$z(t) = |x(\mu(t)) - y(\lambda(t))|, \quad b(t, s) = |B(\lambda(t), s)|,$$

$$f_1(t) = |a(\mu(t)) - a(\lambda(t))|,$$

$$f_2(t) = \int_0^t |B(\mu(t), s) - B(\lambda(t), s)| |x(\mu(s))| ds,$$

$$f_3(t) = \left| \int_{\mu(t)}^{\lambda(t)} B(\lambda(t), s) y(\lambda(s)) ds \right|,$$

$$f = f_1 + f_2 + f_3.$$

We get

$$z(t) \leq f(t) + \int_0^t b(t, s) z(s) ds, \quad t \in J,$$

from (3,6). Clearly $z, f \in \mathbf{L}_1^{p,1}$; $b \in \mathbf{B}_1^{p,1}$. Using Lemma 1 and (3,1) we get

$$||z||_p \le c||f||_p$$

(c denotes constants depending only on g, h). Using Lemma 2 we obtain

$$(3.8) ||f_2||_p \le ||B \circ \mu - B \circ \lambda||_{p,q} ||x \circ \mu||_p \le c ||B \circ \mu - B \circ \lambda||_{p,q} ||a \circ \mu||_p.$$

$$f_3(t) = 0$$
 if $\lambda(t) \le \mu(t)$ because $B(\lambda(t), s) = 0$ for $s > \lambda(t)$. For $\lambda(t) > \mu(t)$ it holds

$$f_3(t) = \left| \int_{\mu(t)}^{\lambda(t)} [B(\mu(t), s) - B(\lambda(t), s)] y(\lambda(s) ds \right| \le$$

$$\le \int_0^t |B(\mu(t), s) - B(\lambda(t), s)| |y(\lambda(s))| ds.$$

Using this and Lemma 2 we get

$$(3.9) ||f_3||_p \le ||B \circ \mu - B \circ \lambda||_{p,q} ||y \circ \lambda||_p \le c ||B \circ \mu - B \circ \lambda||_{p,q} ||a \circ \lambda||_p.$$

(3,5) implies

$$||x - y||_{p} \le c ||x \circ \mu - y \circ \lambda||_{p} = c ||z||_{p}.$$

(3,3-4) follows from (3,7-10).

4. Assumptions. Let

$$\mu_{\nu} \in \mathcal{M}$$
, $B \in \mathbf{B}_{n}^{p,\mu_{\nu}}(J)$, $a \in \mathbf{L}_{n}^{p,\mu_{\nu}}(J)$,

let x_{ν} be the solution of (I) with $\mu = \mu_{\nu}$ for $\nu = 0, 1, 2, ...$

5. Assumptions. Let

$$||a \circ \mu_2||_p \leq \alpha < \infty ;$$

$$(5,2) |B(t,s)|, |B(\mu_{\nu}(t),s)| \leq g(t) h(s); t, s \in J;$$

for $v = 0, 1, 2, \dots$ where $g \in L^p(J)$, $h \in L^q(J)$;

(5,3)
$$||a \circ \mu_{\nu} - a \circ \mu_{0}||_{p} \to 0, \quad \nu \to \infty;$$

(5,4)
$$||B \circ \mu_{\nu} - B \circ \mu_{0}||_{p,q} \to 0, \quad \nu \to \infty,$$

6. Corollary. Let the assumptions 4,5 hold. Then $||x_v - x_0|| \to 0$, $||x_v \circ \mu_v - x_0 \circ \mu_0|| \to 0$ if $v \to \infty$.

Proof follows from Lemma 3.

7. Theorem. Let the assumptions 4 hold. Let $p < \infty$,

$$(7,1) |a(u) - a(v)| \leq A |u - v|^{1/p}; u, v \in J;$$

$$(7,2) |B(u,s) - B(v,s)| \leq \beta(s) |u - v|^{1/p}; \quad s, u, v \in J,$$

where A is a constant, $\beta \in \mathbf{L}^q$;

$$\|\mu_{\nu} - \mu_{0}\|_{1} \to 0, \quad \nu \to \infty;$$

(7,4)
$$\sup |\mu_{\nu} - \mu_{0}| \leq \mu \in \mathbf{L}^{1}.$$

Then $x_v \to x_0$ for $v \to \infty$.

Proof. (7,1-4) imply the assumptions 5. Now we apply Corollary 6.

8. Lemma. Let $B, K \in \mathbf{B}_n^{p,\mu}$, $a \in \mathbf{L}_n^{p,\mu}$, let x be a solution of (I), y a solution of

(8,1)
$$y(t) = a(t) + \int_0^t K(t,s) y(\mu(s)) ds, \quad t \in J.$$

Then there exists a constant c depending only on the functions g_B , h_B , g_K , h_K so that

(8,2)
$$||x - y||_{p} \le c[||B - K||_{p,q} + ||B \circ \mu - K \circ \mu||_{p,q}] ||a \circ \mu||_{p},$$

$$||x \circ \mu - y \circ \mu||_{p} \le c||B \circ \mu - K \circ \mu||_{p,q} ||a \circ \mu||_{p}$$

hold.

Proof. It follows

$$|x(t) - y(t)| \le \int_{J} |B(t, s)| |x(\mu(s)) - y(\mu(s))| ds + \int_{J} |B(t, s) - K(t, s)| |y(\mu(s))| ds, \quad t \in J;$$