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ON SOME LINEAR VOLTERRA DELAY EQUATIONS
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The LP-solutions of the equation
t
1 - @:WHjm@w@m
0

with u(f) < t are investigated. R. K. MILLER has constructed the resolvent kernel
of (I) with u(f) = t in [9] using Picard successive approximation method. Using
this kernel, an explicit formula for the solution x.of (I) corresponding to the right-
hand side a is available. Similarly, we shall find the resolvent kernel R of (I) in general
case solving the resolvent equation '

(®) R@@:B@g+jbaox@@;g@

or

(R) Mgﬂ=&nﬂ+fﬂnﬂﬂd@ﬂdw

This kernel enables us to express the solution x of (I) using the explicit resolvent
formula

X) {’M=M+HWMMW-

Modifying this method, similar results for continuous solutions and for the solutions
of more complicated equation

: .
() x(0) = a(i) + [ LB, ) x(u(s)) ds

0 a
will be shown. The continuous dependence of x on the kernel B and the delay
function u is investigated in the second part. The equations considered comprise

the linear cases of the differential delay equations introduced by L. E. EL§GoLE
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and S. B. NoRkiN in [6] and many of the cases introduced by A. B. My3kis in [10].
We may also find close relationships to some linear cases of the functional differential
equations investigated by J. HALE in [8].

\

1. EXISTENCE AND UNICITY THEOREMS
1. Notation. We shall fix an integer n = 1, real numbers 7, T; 7 < 0 < T; real

numbers p,q; 1 S p < o, 1 £ g < oo; 1/p + 1/g = 1. || will be the Euclidean
norm of matrices. We put J = (t, T). We shall write

1/r
nf||,=(j|f|f) T
J
|71 = viai sup |0

for a matrix-valued (Lebesgue) measurable function fon J.fo u will be the com-
position of functions f, u;

Bou)(t,s) = B(u(t),‘s) ; t,seld;

r/s 1/r
“B"r,s = [J‘ (J. IB(L u)l’ du) dt] i 1l<r<ow, 1<s<w;
s\Js
s/r 1/s
IB]"* = U (J. |B(2, u)|" dt) du] s l<r<o, 1<s<oo;
s\Js

1/r
[J‘ (vrai sup |B(t, s)|) dt] , l<r<ow;
J 8

1B]..

“B",,,,, = vrai sup (I |B(t, u)ls du)l/s , 1<s< .
4 J

for a measurable function B on the cartesian product J x J and a function p : J — J.

2. u-assumptions. Let
@) p:J-J;
(2,2) p be a measurable function on J;
(2,3) t s pu(t) s tforall telJ.

3. B-assumptions. Let

(3,1) B be a finite complex n x n-matrix-valued function defined for all points of
the interval J x J; -
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(3,2) B(t,s) =0 for s <0 or s > t;
(3,3) B be measurable on J x J;
(3,4) B u be measurable on J x J;
(3,5) |B(t, s)| < g(t) h(s); t,s€ J;
(3.6) [B(u(t), 5)| < (1) h(s); t,s€ J,

where the real functions g, h satisfy ||g||,, < oo, [Ih"g < o0. We shall sometimes
use weaker assumptions

(3.7) [B(t e < o, [B(). 1), < w, teJ;
(3.8) "B"p,q <. 0,

(39) B2 #fp. < o

(3,10) |Bo u||”* < oo;

instead of (3,5-6),if 1 < p,q < .

4, a-assumptions. Let
(4,1) a be an n-dimensional vector function (column-matrix) defined on J;
(4,2) a be measurable on J;
43) [, < oo;
(4,4) a o u be measurable on J;
4.5) |lacu|, < .
5. Definition. .# will denote the set of all u satisfying (2,1 —3). Let ue .
B = B}"(J)
will be the set of all B satisfying (3,1—6) and, if 1 < p,
B = B24())
the set of all B satisfying (3,1 —4), (3,7—10).
L = 1240)

will be the set of the functions a satisfying (4,1—5). We shall write shortly L? if
u(t) = t. The solution of the equation (I) will be a function x € L satisfying (I) for
all 1€ J. '

6. Remark. We get immediately B < B for 1 < p < o from Definition 5. It
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follows from the equation (I) that its solution x is independent of the values p(f)
for t < 0. We have introduced these values only for easier formulations.

We find some essential differences comparing the equation (I) with the classical
case u(f) = t. Let us note that supposing measurability or integrability of a function f,
we do not generaily get the same property for the composition fo. u. Hence the
assumptions (3,4), (3,6) e.t.c. are necessary. It is also worth mentioning that changing
a value x(f) of a solution x of (I) at one point we may get a function that does not
satisfy (I) for the elements of a:nonzero set, for some p. Hence it is not-sufficient to
define x, a, B(+, s) only almost everywhere. However, the functions g, B(t, +) may
be defined only almost everywhere.

7. Theorem. Let p€ A, Be B. Then there exists a resolvent kernel R € B satis-
fying (R), (R’) for all t,se J.

Proof. We prove the theorem using Picard successive approximation method.
(Cf. [9].) We introduce these approximations by

(.1) , Ro(t, ) = B(t, 5),

( t
Rvﬂ(t, s) = J B(t, u) R,(u(u), s)du; v=0,1,2,...; t,seJ.
s

We shall prove by induction that:
(i) the definition (7,1) is a good one;

(ii) R,., B,
(i) i Ren(ts) = _[ "R(t, u) B(u(u), s) du,

(iv) Ry (59| S &)1 n(s) (e, 11

where

t t t
&) = f B, s)tds,  n(s) = j IBUG@), )P dr,  L(ts) = '[ &))" du
1] s s
fort,seJ;v=0,1,2,.... Let firstly v = 0. Using the H6lder inequality we obtain

| J‘ ‘IB(t, u)| |B(u(u), s)| du <

s ([ 1ot ot )™ ([ 1m0 d?)”’ < &l ().
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Hence the definition (7,1) is a good one, (iv) holds, R, satisfies (3,1—4) and (3,7—10)
and we obtain (ii). Clearly (iii) holds as well. Let now v 2 1 and let the assertions
(i)—(iv) hold for the indices « < v — 1. Using the induction predicate and the Holder
inequality we get

[T 0 .ot 9 s [ e e )™ ([

s

“\1/p
)P d_u> s

= ) [ -[ ‘é(ﬂ(u)),/., ‘:(l(‘fui 51);!__1 du]”p n(s)’? <

s 0| [t 2 [ [ v ] ] oy s

s e [T

Now we follow the argument of the first induction sfep. (iii) follows from the relations

Ryt s) = J‘ 'B(t, u) J' "Ry y(u(w), ©) B(u(o), s) do du =

sJv

= J' ' J“B(t, u) R, (u(u), v) du B(u(v), s) dv = I ‘Rv(t’ v) B(u(v), s) dv .
Let us put :
(7,2) R(t; 5) =§1 R(t,s).

The function R is defined on the whole interval J x J and satisfies

R, 3)| < c &(t)"a n(s)e .
Similarly,

|R(u(2), 5)] = e S(u(®))""* n(s)"” .

Now, if R = R + B then R € B and using the Lebesgue theorem we get

j'B(t, u) R(u(u), s) du = Z B(t, u) R,(u(u), s) du =

o0 t o0
=Y | B(t,u) R(u(u), s)du = Y R/(t,s) = R(t,s) — B(t,s) .
v=0], v=1
Hence (R) holds. We prove (R') similarly using (ii).
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8. Remark. There exists R € B satisfying (R), (R’) and the inequalities

IR(t, 5)|, [R(u(t), 9)] <  g(2) hs)

for B € B, where x depends only on the functions g, h corresponding to B according
to the relations (3,5—6). The proof is similar to that of Theorem 7. We obtain for
the successive approximations

R )|, |[Ru(k(2), 5)| < g(t) h(s) £i(t, 5)

1 T Pv/p t\q v/q
T veree
fv(t’s)=_l'(J‘ h)v’ p= 0,
\V. 0
L ‘yv, p=1.
V!<J.o)

9. Theorem. Let u€ .#, Be B or Be B; a e L. Then there exists a unique solution
x € L of the equation (I). This solution is given by (X), where R is the corresponding
resolvent kernel.

where

Proof. Let us define x by (X). Then

J:B(t, s) x(u(s)) ds = J:B(t’ 5) [a(y(s)) + J.:(,)R(y(s), u) a(u(u)) du] ds =
= J: B(t, u) a(u(u)) du + J‘ ; J-:B(t, 5) R(u(s), u) ds a(u(u)) du =

- f 'R(t, u) a(u(u)) du

0

in virtue of (R). Hence x fulfils (I). If the couple x, a satisfies (I) it satisfies also (X)
because — B is the resolvent kernel corresponding to —R. So we get the unicity.

10. Example. For t — p(f) 2 ¢ > 0, te J, we get a finite number of approxima-
tions for the resolvent kernel evaluation. We may also simply compute the solution x

provided that u is a step function e.t.c.

11. Remark. Let 1 < p < oo, Be BE'*(J),

(11,1) J‘lB(t,s)—B(u,s)l"ds—-»O, u—t; utel.
J =
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Then the resolvent kernel also fulfils (11,1) and for continuous a the solution x of (I)
is continuous as well. Using Carathéodory condition for the measurability of a com-
posed function (see e.g. M. M. VAINBERG [12]) we may prove the following more
general assertion.

12. Theorem. Let pi € #, let the kernel B satisfy (3,1—2) and
(12,1) B(t, *) is measurable on J for all te J;
(12,2) |B(t, s)| < h(s); t,s€ J where heL;

(12,3) J‘ |B(u, s) — B(t,s)|ds >0 for u—t; utel.
J

Let a be continuous on J. Then the equation (I) has a unique solution x continuous
onJ. '

13. Remark. A function B continuous on J x J satisfies (12,1—3).

14. The more general case. Now we generalize the previous results to the equation
(). Let o be a countable set, u*e A for all ae . Let ap€ o, p™(t) = t, te J.
Let B* be a kernel satisfying (3,1 —2) for all « € o and let
(14,1) B*(p#(¢), s) be a measurable function on J x J;

(14,2) |B*(b(2), s)| < g°(e) h*(s); t,s€T;

for all a, f € of where
G = (Z“gﬂU;)l/P <w, H= (Z"hﬁ":)l/q & 60 .
8

(We put G = sup ||g?|, if p = oo e.t.c.) We denote B = {B} the system of this
8

kernels, B the family of this systems. Let L be the set of functions satisfying (4,1—2)
and the assumptions:

(14,3) a - p* is measurable for all « € o/;

(149 folos = (la e w75 < oo

(We put |a||,, = sup [|@op*|. if p = 0.) We shall consider the equation

0 (1) = alt) + o';sa(t, ) x(u(s)) ds

and seek a system R = {R°} of resolvent kernels satisfying the resolvent equations
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® O R()=B()+ J "%‘Bﬂ(z,; u) RA(uP(u), ) du ,

(R) R¥(t, 5) = Bt 5) + qup:R’(t, u) B%(uP(u), s) du

for all « € of. The corresponding resolvent formula for the solution x will be of the
form :

&) (i) = a(r) + J (:;R"(t, Ha()ds, tel.

15. Theorem. Let B = {B’} €B. Then there exists a system R = {R*}eB of
resolvent kernels satisfying (R), (R’) and the inequalities

|R¥u2(e), s)| < cg’(t) h*(s); t,sed; o Beds;
where the constant ¢ depends only on the functions g", k%, y, 6 € o.

Proof. We may define the systems of resolvent kernels by the formulas

Ry(t, s) = BX(t,s),

t {
R‘:H(t,s)=IZB"(t,u)R“(u’(u),s)du; t,seJ; aesd; v=0,1,2,...
3ﬁ

similarly to the case of the equation (I) (see Remark 8). These systems belong to B
and it holds

|R3(?(2), s)l < g%(1) h(s) w,(t)

(o) "

\gJo J| §f 1<psg o,

where

vl
. wy(t) = D
HY | ¢
B 0

if p=1.
v!

The system of resolvent kernels satisfying the assertion of the theorem may be defined
by ‘
/ ; ©
"R*=Y R}, acd.

v=0

16. Theorem. Let B = {B*}eB. R = {R°} be the corresponding sjzstem of re-
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solvent kernels, a€ L. Then the equation (I) has a umque solution x € L. This
solution is given by the resolvent formula (X) :

Proof is analogous to that of Theorem 9.

2. CONTINUITY

1. Lemma. Let beBY*; f,zeL}"; b 2 0; let r be the resolvent kernel cor-
responding to the kernel b. Then r 2 0 and the inequality

(L1) 2(0) < £(2) + 'fo'b(:., $) 2(u(s) ds, te J,
implies

(1,2) 2() < () + J:r(t, JF)de, tel.

Moreover, there exists a constant ¢ > 0 dependent only on the functions g,, h,
so that (1,1) and the assumiption z = 0 imply

(1.3) 21> = 171,

Proof. We obtain r = 0 from b = 0 and the successive approximation method.
Hence and from (1,1) it follows

|z onl, < c|fonl,-

(1.4) (1) + f (:r(t, u) 2(u(u) du < (7) + j (:r(t, u) f(u(w)) du +

+ J:b(t, s) z(p(s)) ds + J:r(t, u) f:(u)b(u(u), s) z(u(s)) ds du .

Let us denote the last integral by U. Replacing the upper limit u(u) by u and using
the resolvent formula we get after simple calculation

t
= j [r(t, ) = b(t, 5)] z(u(s)) ds .
o
Hence and from (1,4), (1,2) follows. (1,2) implies (using also z > 0)

lzlo = If1s + 17 < &l [ e[ ol
lzonly < 172 uls I8:le lg:l-

We obtain (1,3) from here and Remark 8 of the first part.

2. Lemma. Let Be B2, a e L. Then |B| € BY*; |B|, |B(u(*), -)| € B, |a| e L}
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and we may choose g5 = gp, hjs = hp. If, moreover, x is a solution of (1), then
there exists a constant ¢ > 0 depending only on g, hy so that

Ixls = llals + claonl,, |xouls = clacnls.
Proof follows from Lemma 1.
3. Lemma. Let A, uec #, acL?* n L2 BeB2* nB2*, geL? hels,

(3.1) 1B(t, ). B o). |BG(O). )] < g ) : tose

let x be a solution of (I), y a solution of the equation

G2 . (1) = a(r) + j 'B(t, ) y(i(s)) ds, ted.

0

Then there exists a constant ¢ depending only on the functions g, h so that it holds

33 lx=slpscllacn—aci], + |Bon—Bodl,(lacul, +a-2])],
(3.4) Ixon—yoi; =
S lacu—aoil, + [Bon—Bolyy(lacul, + oAl
Proof. We get .
(35) x(t) — »(1) = j ;B(r, ) [x(u(s)) — ¥(A(s)] ds,
(3.6) X)) — () = a(u() — a(a() +

u(t) (1)
+ I B0, ) () s - f BO), 5) y(i(s)) ds =

0

= a(u)) - a(i(0) + j :"’[B(u(r), 5) — B(i(2), )] x{us)) ds +

u(t) A(t)
+ j BU(1), 5) [x(u(s)) — y(A(s))] ds — f B(1(1), 5) ¥(A(s)) s

0 )

from (I) and (3,2). Let us put (for t, s € J)
2(t) = [x(u(®) — Y|, (e 5) = |B(A(2), 9)]
£1(t) = |a(u(®)) - a(A()| ,
120



1) = j ;|B(u(t), ) = B((), 9| [x(u(s)] ds

£1(t) = j B(e), 5) 1) d

(0

f=fi+fi+fs5.

We get
' @gmpfmg@m,mL

0

from (3,6). Clearly z, fe L{''; be B}''. Using Lemma 1 and (3,1) we get
(3.7) 2l = €l £1,
(c denotes constants depending only on g, h). Using Lemma 2 we obtain

(3’8) ||fz|[p = ”B o — Bo }‘”p.q "x °”"p s c"B op—Bo )‘"p,q "a g ”"p :
f3(t) = 0if A(f) < p(t) because B(A(f), s) = 0 for s > A(t). For A(f) > u(r) it holds

"B, 5) — B, 9] y(i(s) ds| <

u(n)

s [/186:0,9) ~ B0, ) b)) as.

f 3(t) =

Using this and Lemma 2 we get

(3’9) "f3”p = "B"” - B"A"p.q "y °)‘”p S c"B"“ —Bol

ra "a 9 l"p ¢
(3,5) implies
(3,10) lx = yls s clxon = yoaf, =clz],.
(3,3—4) follows from (3,7 10).

4. Assumptions. Let

ue M, BeBr*(J), a eli*(J),

let x, be the solution of (I) with p = p, forv =0,1,2,....

5. Assumptions. Let
(5.1) laoml, s a<w;

(5.2) |B(t, 5)], [B((2), 5)| < 9(t) h(s) s t,s5€ 75
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forv=0,1,2,... where g € L?(J), h e LY(J);
(5.3) laon, —aou), >0, v oo;

(5.4 ) "Boﬂv—Boﬂo"p'q—)O, y— 0,

6. Corollary. Let the assumptions 4,5 hold. Then |x, — xo| =0, |x,0u, —
— Xg o fof| = 0if v — 0.

Proof follows from Lemma 3.

7. Theorem. Let the assumptions 4 hold. Let p < o,
(7.1) la(u) — a(v)| < A|u — v|'?;u,0e T ;
(7,2) . |B(u, s) - B(v,s)| < B(s)|u — v|'"; s,u,veJ,
where A is a constant, B e L9,
(7.3) Iy = molly >0, v o0
(7,49 sup luy — po| S melL!.
Then x, — x, for v —» .

Proof. (7,1 —4) imply the assumptions 5. Now we apply Corollary 6.
8. Lemma. Let B, K € Bl'*, ae L*, let x be a solution of (), y a solution of
t
8,1) W) = a(t) + J K(t, 8) y(u(s)) ds, teJ.
0

Then there exists a constant c depending only on the functions gg, hg, gk, hx
so that

(8,2) lx = y|, S c[|B =Ko+ |[Bon —Kop

lp.ad |aoul,

I,gc"Bou-—Ko/,t

a°“|p

|Pr41‘

(8,3) “Xoﬂ—yoﬂ
hold.

Proof. It follows ‘

(84) Ix() — ()| = j 1806 )] () — ()] s +

+ LIB(t, s) — K(¢, s)| ly(u(s))|-as . ted:
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