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ON THE NUMBER OF NORMAL SUBGROUPS
OF A GIVEN PRIME INDEX

Jiki PAROBEK, Praha

(Received December 10, 1974)

Our aim in this short note is to give an optimum upper bound to the number of
normal subgroups of index p, p a prime, in groups of order n. Our result is divided
into two theorems: Theorem 1 gives the estimate, Theorem 2 states its optimality.

Remark on notation and terminology. By |X| we mean the éardina]ity of
a set X (or its order if it is a group). If 4, B are two complexes in a group G, then AB
means, as usual, the complex in G consisting of all ab where a € 4, b € B. The sign ®
denotes the direct product of groups. A normal subgroup of index p (in a group G)
will also be briefly called an Np-subgroup (of G). The word “group” means “finite
group” throughout the paper. '

Lemma. Let N,, N, be two distinct Np-subgroups of a group G. Then N, n N,
is an Np-subgroup of N,.

Proof. The second (or the first as it is sometimes called) theorem on isomorphism
states, if applied to our subgroups N,,N,, that N;/N; n N, is isomorphic to
N;N,|N,. As both N,, N, are of a prime index, we have N;N, = G, and the proof
follows immediately.

Theorem 1. For the number s,(G) of normal subgroups of index p, p a prime, in
a group G of order n, the following inequality holds:

) W) s L=,
. p—1

where r is the greatest integer such that p | n.

Proof. For an arbitrary group X, let r,,(X ) denote the greatest integer such that
p"™ | |X|. We shall prove (1) by induction with respect to r,(G). The case r,(G) = 0
is obvious, the case r,(G) = 1 follows immediately from the lemma since if Ny, N,
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are two distinct Np-subgroups of G, then |G| = plN,| = p2|Nl N N2| so that
r,(G) = 2. Hence, let r be an integer, r = 2, and suppose that (1) holds for all
groups X for which r(X) < r — 1. Let G be a group of order n with r,(G) = r.
Suppose that G has exactly g Np-subgroups N, N,, ..., N,. We clearly may assume
g 2 2. Let us now take the set # = {N,, N, ..., N,} and partition it into B disjoint
nonempty subsets "o, such that N; and N, (2 < j, k < q) belong to the same class
if and only if Ny, n N; = N, n N,. Thus, among the groups Ny " N,, N, n N3, ...
..., Ny n N, there are exactly f distinct ones. Since all these groups are Np-sub-
groups of N, (as follows from the lemma) and since r,(N,) = r — 1, we have by
hypothesis

r—1 _
@) p<? 1
; 5= 1
Further, we shall prove
(3) ’ a,<p for i=1,...,8

where a; = |d,-|. Without any loss of generality, let o/, (i arbitrary) consist of the
first «; elements of #. Thus, let NyNn N, =N, nN;=...=N; NN, = Q.
By an easy argument we find that

4) N;AnN,=Q forany 1£j<a;+1 and 25k <o, + 1.

Indeed, we have N; A N,> (N, nN))n (N, nN,) = Q and [N; A N,| = |Q| by
the lemma. According to (4), the sets Q, Ny — Q,...,N,,,, — Q must be disjoint.
Hence, in view of the relations |Q| = n/p*, [N, — Q| =n[p — n[p*> (1 12
< a; + 1) following from the lemma, we get the condition

n n h
(——?)(a,+l)+——2§n

p 14
implying (3). By (3) and (2), we have

B pr—l_l
g-1=Ya, S fpsp——
i=1 p—1
whence
gs¥=1
p—1

This completes our proof.
Theorem 2. The estimate (l) of Theorem 1 is best possible since for any pair p, n, p
a prime, of positive integers, at least one group G of order n exists for which the

equality sign takes place in (1).
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Our proof is based on a certain well-known assertion of the theory of abelian
groups, see e.g. [1], p. 53, Satz 51.

Proof of Theorem 2. For given n, p, let r, m be those integers for which n = p'm,
p ¥ m. Let H be an arbitrary group of order m and let A denote the (elementary)
abelian group of order p" and of type (p,...,p). Put G = A ® H. (For m =1 or
r = 0, this reduces to G = A and G = H, respectively.) To prove Theorem 2, it
evidently suffices to show that A possesses (p” — 1)/(p — 1) distinct subgroups of
index p (that is just a special case of the assertion mentioned above; we shall,
however, give its proof for the sake of completeness). Indeed, if B;, B, are two
distinct subgroups of index p in A, then B, ® H, B, ® H are two distinct
Np-subgroups of G. — To determine the number of Np-subgroups in A (we retain
our short notation though the normality is trivial in this case), let us first note that
each Np-subgroup of A is of type (p, ..., p) since its invariants must be divisors of
those of A. The basis of each Np-subgroup therefore consists of r — 1 elements.
Any independent (r — 1)-tuple of elements of A may evidently be chosen in the fol-
lowing manner: In the first step, we choose an arbitrary element a, € 4, a, =+ 1;
the elements a,, ..., a;,_, being already chosen, in the i-th step 2 < i <r — 1)
we choose an arbitrary element a; € A not belonging to the group generated by the
elements ay,...,a;_;. In this way, just ny =(p" = 1)(p" — p)...(p" — p'7?)
distinct independent (r — 1)-tuples may be chosen. Analogously, we find that for
each Np-subgroup of 4, exactly n, = (p"™' = 1)(p"' = p)...(p"""' = p7?)
distinct independent (r — 1)-tuples may be chosen out of its elements. Thus, among
the total of n, distinct independent (r — 1)-tuples made up of the elements of A,
every n, of them generate the same Np-subgroup. The number of distinct Np-
subgroups in A is therefore given by n,/n, = (p” — 1)/(p — 1). The same number
of (distinct) Np-subgroups will, as remarked above, exist in the group G = 4 ® H.
The proof is hereby completed.

In the end of our note, let us mention two special cases of Theorem 1 which perhaps
are of certain importance since they are concerned with the class of all, not explicitly
normal, subgroups.

Corollary 1. For the number s,,(G) of subgroups of a given prime index, p, in an
abelian group G of order n, the estimate (1) of Theorem 1 holds and is best possible.

Corollary 2. For the number s,(G) of subgroups of index 2 in a group G of
order n, the inequality
5;(G) 2" -1

holds where r is the greatest integer such that 2"

n. This estimate is best possible.

Proof of Corollary 1 is obvious (the optimality is secured by Theorem 2 — just
taking H abelian), proof of Corollary 2 follows from the well-known fact that in
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