

Werk

Label: Article **Jahr:** 1976

PURL: https://resolver.sub.uni-goettingen.de/purl?31311157X_0101 | log27

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

LATTICE ORDERED GROUPS WITH CYCLIC LINEARLY ORDERED SUBGROUPS

JÁN JAKUBÍK, Košice

(Received October 18, 1974)

In this note a solution is given to a problem proposed by Conrad and Montgomery [3] on lattice ordered groups G with the property that each linearly ordered subgroup of G is cyclic.

Let G be an archimedean lattice ordered group. Consider the following conditions for G:

- (a) G is singular;
- (b) each linearly ordered subgroup of G is cyclic.

In [3] it was proved that (a) implies (b) while the problem whether (a) is implied by (b) remained open. We shall show that the answer is negative in general; nonetheless, (b) \Rightarrow (a) is valid if G is complete.

For the basic notions and notations cf. BIRKHOFF [1] and FUCHS [4]. Let G be a lattice ordered group. An element $0 \le g \in G$ is called singular, if $x \land (g - x) = 0$ for each $x \in G$ with $0 \le x \le g$. It is easy to verify that a strictly positive element $g \in G$ is singular if and only if the interval [0, g] is a Boolean algebra. The l-group G is singular, if for each $0 < g \in G$ there is a singular element $h \in G$ such that $0 < h \le g$. Singular lattice ordered groups were investigated in the papers [2], [5], [6], [7], [8].

The following theorem is known (cf. $\lceil 2 \rceil$):

(A) Let G be a complete l-group. Then there are l-subgroups A, B of C such that A is singular, B is a vector lattice and $G = A \times B$.

(The symbol $A \times B$ denotes the direct sum of *l*-groups A and B.)

Now let G be a complete l-group that is not singular. According to (A) we have $B \neq \{0\}$ and hence there is $b, 0 < b \in B$. Let R be the set of all reals; since B is a vector lattice, for each $r \in R$ there exists $rb \in B$. Denote $B_1 = \{rb : r \in R\}$. Then B_1 is a linearly ordered subgroup of G that fails to be cyclic. Therefore (a) is implied by (b) whenever G is a complete lattice ordered group.

The following example shows that an archimedean lattice ordered group fulfilling (b) need not be singular.

Let Q be the set of all rational numbers and let G_0 be the set of all real functions defined on Q. For $f, g \in G_0$ we put $f \leq g$ if $f(x) \leq g(x)$ for all $x \in Q$. Then $(G_0; +, \leq)$ is an archimedean lattice ordered group. Let φ be a one-to-one mapping of the set N of all positive integers onto the set Q. Further, let G be the set of all $f \in G_0$ with the following properties:

- (i) $2^{n-1} f(\varphi(n))$ is an integer for all $n \in N$;
- (ii) there are irrational numbers $\alpha_1 < \beta_1 \le \alpha_2 < \beta_2 \le ... \le \alpha_m < \beta_m$ such that f is a constant on each set $Q \cap [\alpha_i, \beta_i]$ (i = 1, ..., m) and f(x) = 0 for each $x \in Q \setminus \bigcup [\alpha_i, \beta_i]$ (i = 1, ..., m). Then G is an l-subgroup of G_0 .

Let $H \neq \{0\}$ be a linearly ordered subgroup of G. For each $h \in H$ put

$$s(h) = \{ x \in Q : h(x) \neq 0 \} .$$

Lemma 1. Let $0 \neq h_i \in H$ (i = 1, 2). Then $s(h_1) = s(h_2)$.

Proof. Suppose that $s(h_1) \neq s(h_2)$. Then we can assume that there is $x \in s(h_1) \setminus s(h_2)$. We have $|h_i| \in H$, $s(|h_i|) = s(h_i)$ (i = 1, 2). The elements $|h_1|$, $|h_2|$ are comparable and $|h_1|(x) > 0 = |h_2|(x)$. Since $h_2 \neq 0$, there is $y \in s(h_2)$ and hence $|h_2|(y) > 0$. There is a positive integer n with $n|h_2|(y) > |h_1|(y)$. Since $n|h_2| \in H$, the elements $n|h_2|$ and $|h_1|$ are comparable, thus $n|h_2| > |h_1|$. But

$$0 = n|h_2|(x) < |h_1|(x)$$

and this is a contradiction.

For $x \in Q$ let

$$F_x = \{h(x) : h \in G\}.$$

Obviously F_x is an additive group. •

Lemma 2. Let $0 \neq h_0 \in H$, $x \in s(h_0)$. The mapping

$$\varphi_1:h\to h(x)$$

is an isomorphism of H into F_x .

Proof. If $h_1, h_2 \in H$ and $o \in \{+, \land, \lor\}$, then

$$\varphi_1(h_1 \circ h_2) = h_1(x) \circ h_2(x)$$
,

thus φ_1 is a homomorphism of H into F_x . Let $\varphi_1(h_1) = \varphi_1(h_2)$ and suppose that $h_1 \neq h_2$. Then $h = h_1 - h_2 \in H$, $h \neq 0$ and $h(x) = 0 \neq h_0(x)$. Thus $s(h) \neq s(h_0)$, which contradicts Lemma 1. Therefore $h_1 = h_2$ and hence φ_1 is an isomorphism.

Lemma 3. The l-group H is cyclic.

Proof. Let $x \in Q$, $\varphi^{-1}(x) = n$. There exist irrational numbers α , β such that $x \in [\alpha, \beta]$ and $\varphi^{-1}(y) \ge n$ for each $y \in [\alpha, \beta] \cap Q$. Let $f \in G_0$ such that $f(z) = 2^{1-n}$