

Werk

Label: Article **Jahr:** 1976

PURL: https://resolver.sub.uni-goettingen.de/purl?31311157X_0101 | log111

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

ON OVALOIDS IN E4

ALOIS ŠVEC, Olomouc (Received January 19, 1976)

One of the main tools used for characterizations of hyperspheres in E^n is the integral formula (1.14.1) of [1]. For a simple situation to be described below, we are going to rewrite this formula and to prove several more profound consequences of it.

Let $M^3 \subset E^4$ be an hypersurface satisfying: (i) on M^3 , there is a system of lines of curvature, (ii) the principal curvatures are positive, (iii) the boundary ∂M^3 of M^3 consists of umbilical points.

In a suitable domain of M^3 , consider the moving orthonormal frames $\{M, v_1, v_2, v_3, v_4\}$ such that v_1, v_2, v_3 are tangent to the lines of curvature. Then

(1)
$$dM = \omega^{1}v_{1} + \omega^{2}v_{2} + \omega^{3}v_{3},$$

$$dv_{1} = \omega^{2}_{1}v_{2} + \omega^{3}_{1}v_{3} + \omega^{4}_{1}v_{4},$$

$$dv_{2} = -\omega^{2}_{1}v_{1} + \omega^{3}_{2}v_{3} + \omega^{4}_{2}v_{4},$$

$$dv_{3} = -\omega^{3}_{1}v_{1} - \omega^{3}_{2}v_{2} + \omega^{4}_{3}v_{4},$$

$$dv_{4} = -\omega^{4}_{1}v_{1} - \omega^{4}_{2}v_{2} - \omega^{4}_{3}v_{3}$$

with the usual integrability conditions, and we may write

(2)
$$\omega_1^4 = a\omega^1, \quad \omega_2^4 = b\omega^2, \quad \omega_3^4 = c\omega^3,$$

a > 0, b > 0, c > 0 being the principal curvatures. From (2), we get

(3)
$$da \wedge \omega^{1} + (a - b) \omega_{1}^{2} \wedge \omega^{2} + (a - c) \omega_{1}^{3} \wedge \omega^{3} = 0,$$

$$(a - b) \omega_{1}^{2} \wedge \omega^{1} + db \wedge \omega^{2} + (b - c) \omega_{2}^{3} \wedge \omega^{3} = 0,$$

$$(a - c) \omega_{1}^{3} \wedge \omega^{1} + (b - c) \omega_{2}^{3} \wedge \omega^{2} + dc \wedge \omega^{3} = 0$$

and the existence of functions $a_1, ..., c_3, e$ such that

(4)
$$da = a_1\omega^1 + a_2\omega^2 + a_3\omega^3, \quad (a-b)\omega_1^2 = a_2\omega^1 + b_1\omega^2 + e\omega^3,$$

$$db = b_1\omega^1 + b_2\omega^2 + b_3\omega^3, \quad (a-c)\omega_1^3 = a_3\omega^1 + e\omega^2 + c_1\omega^3,$$

$$dc = c_1\omega^1 + c_2\omega^2 + c_3\omega^3, \quad (b-c)\omega_2^3 = e\omega^1 + b_3\omega^2 + c_2\omega^3.$$

The curvatures of M³ be defined by

(5)
$$H = a + b + c$$
, $L = ab + ac + bc$, $K = abc$.

On M^3 , consider the invariant 2-form

(6)
$$\tau = (b-c)^2 \omega^1 \wedge \omega_2^3 - (a-c)^2 \omega^2 \wedge \omega_1^3 + (a-b)^2 \omega^3 \wedge \omega_1^2;$$

we have

(7)
$$d\tau = \{2\varphi(b_1, c_1, a_1) + 2\varphi(a_2, c_2, b_2) + 2\varphi(a_3, b_3, c_3) + 6e^2 + (a - b)^2 ab + (a - c)^2 ac + (b - c)^2 bc\} \omega^1 \wedge \omega^2 \wedge \omega^3,$$

where

(8)
$$\varphi(x, y, z) = x^2 + y^2 - xy - xz - yz.$$

Theorem 1. Let $M^3 \subset E^4$ satisfy (i)-(iii) and (iv): there is, on M^3 ,

$$(9) A da + B db + C dc = 0,$$

A, B, C being functions such that

(10)
$$A > 0$$
, $B > 0$, $C > 0$; $\varrho(A, B, C) \ge 0$, $\varrho(A, C, B) \ge 0$, $\varrho(B, C, A) \ge 0$; $\varrho(X, Y, Z) := 4(X + Z)(Y + Z) - (X + Y - Z)^2$.

Then M³ is a (part of a) hypersphere.

Proof. From (9), we get

(11)
$$Aa_1 = -Bb_1 - Cc_1$$
, $Bb_2 = -Aa_2 - Cc_2$, $Cc_3 = -Aa_3 - Bb_3$.

Then

(12)
$$A\varphi(b_1, c_1, a_1) = (A + B) b_1^2 + (B + C - A) b_1 c_1 + (A + C) c_1^2 \ge 0$$
,
 $B\varphi(a_2, c_2, b_2) = (A + B) a_2^2 + (A + C - B) a_2 c_2 + (B + C) c_2^2 \ge 0$,
 $C\varphi(a_3, b_3, c_3) = (A + C) a_3^2 + (A + B - C) a_3 b_3 + (B + C) b_3^2 \ge 0$

as a consequence of (10). From the Stokes formula $\int_{\partial M} \tau = \int_M d\tau$, we get a = b = c. QED.

Theorem 2. Let $M^3 \subset E^4$ satisfy (i)-(iii) and (iv): there is a function F(H, L, K) such that, on M^3 ,

(14)
$$\sigma(b,c) > 0, \quad \sigma(a,c) > 0, \quad \sigma(a,b) > 0;$$

$$\sigma(\xi,\eta) := F_H + (\xi+\eta) F_L + \xi \eta F_K;$$

(15)
$$\varkappa(a, b, c) \geq 0 , \quad \varkappa(a, c, b) \geq 0 , \quad \varkappa(b, c, a) \geq 0 ,$$

$$\varkappa(u, v, w) := 15F_H^2 + 4(2u^2 + 2v^2 + 5uv + 3uw + 3vw) F_L^2 +$$

$$+ (3u^2v^2 - u^2w^2 - v^2w^2 + 6u^2vw + 6uv^2w + 2uvw^2) F_K^2 +$$

$$+ 12(2u + 2v + w) F_H F_L + 6(3uv + uw + vw) F_H F_K +$$

$$+ 4(3u^2v + u^2w + 3uv^2 + v^2w + 7uvw) F_L F_K .$$

Then M³ is a (part of a) hypersphere.

Proof. From (13), we get (9) with

(16)
$$A = \sigma(b, c), \quad B = \sigma(a, c), \quad C = \sigma(a, b)$$

and the conditions (10) turn out to be exactly (14) and (15). QED. Let us prove just two consequences of our Theorem 2.

Corollary 1. Let $M^3 \subset E^4$ satisfy (i)-(iii) and (iv): we have, on M^3 ,

(17)
$$f(H, L, rHL + K) = 0,$$

 $r \in \mathbb{R}$ satisfying $83r \ge 6\sqrt{3} - 5$ and $f(\alpha, \beta, \gamma)$ being a function with one of its derivatives positive and the other two non-negative. Then M^3 is a (part of a) hypersphere.

Proof. Set

(18)
$$F(H, L, K) = f(H, L, rHL + K)$$
.

Then

(19)
$$F_H = f_\alpha + rLf_\gamma, \quad F_L = f_\beta + rHf_\gamma, \quad F_K = f_\gamma,$$

(20)
$$\sigma(\xi, \eta) = f_{\alpha} + (\xi + \eta) f_{\beta} + \{r(\xi + \eta) (2H - \xi - \eta) + (r + 1) \xi \eta\} f_{\gamma},$$

and we have (14). Further,

(21)
$$\varkappa(u, v, w) = \mu_1 f_\alpha^2 + \mu_2 f_\beta^2 + \mu_3 f_\alpha f_\beta + \mu_4 f_\alpha f_\gamma + \mu_5 f_\beta f_\gamma +$$

$$+ \left\{ \mu_6 + (83r^2 + 10r - 1) w^2 (u^2 + v^2) \right\} f_\gamma^2$$

with $\mu_i = \mu_i(u, v, w) \ge 0$ for $u \ge 0$, $v \ge 0$, $w \ge 0$, and (15) follow easily. QED.

Corollary 2. Let $M^3 \subset E^4$ satisfy (i)-(iii) and (iv): we have, on M^3 ,

(22)
$$K = \text{const.}, \quad 4HK \ge L^2.$$

Then M^3 is a (part of a) hypersphere.