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WEAK-CONTINUITY AND CLOSED GRAPHS

TakAsHI NoIRrI, Yatsushiro
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I. INTRODUCTION

The concept of weak-continuity was first introduced by N. LEVINE [4]. In 1968,
M. K. SINGAL and A. R. SINGAL [7] defined almost-continuous functions and showed
that every continuous function is almost-continuous and every almost-continuous
function is weakly-continuous, but the converses are not necessarily true in general.
Recently, P. E. LoNG and L. L. HERRINGTON [6] have obtained several properties
concerning almost-continuous functions and have given two sufficient conditions for
almost-continuous functions to be continuous. The purpose of the present note is to
give some sufficient conditions for weakly-continuous functions to be continuous.

II. DEFINITIONS

Let S be a subset of a topological space X. The closure of S and the interior of S
are denoted by Cly(S) and Inty(S), respectively. Throughout this note, X and Y
denote topological spaces, and by f : X — Y we represent a function f of a space X
into a space Y.

Definition 1. A function f:X — Y is said to be almost-continuous [7] (resp.
weakly-continuous [4]) if for each point x € X and each open set V = Y containing
f(x), there exists an open set U = X containing x such that f(U) < Inty(Cly(V))
(resp. f(U) = Cly(V)).

Definition 2. A subset S of a space X is said to be N-closed relative to X (briefly
N-closed) [1] if for each cover {U, |ae o} of S by open sets of X, there exists
a finite subfamily &/, = & such that

S < U{CI(U,) | e o} .
Definition 3. A space X is said to be rim-compact [8, p. 276] if each point of X

has a base of neighborhoods with compact frontiers.
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III. WEAK-CONTINUITY AND CLOSED GRAPHS

It is well known that if f : X — Yis continuous and Yis Hausdorff, then the graph
G(f) is closed in the product space X x Y. P. E. Long and L. L. Herrington showed
that “continugus” in this result can be replaced by “almost-continuous” [6, Theorem
9]. Moreover, we shall show that “almost-continuous” can be replaced by “weakly-
continuous”.

Theorem 1. If f: X — Y is weakly-continuous and Y is Hausdorff, then f has
the following property:

(P) For each (x, y) ¢ G(f), there exist open sets U = X and V < Y containing x
and y, respectively, such that f(U) n Inty(Cly(V)) = 0

Proof. Let (x, y) ¢ G(f), then y = f(x). Since Y is Hausdorff, there exist disjoint
open sets ¥ and W containing y and f(x), respectively. Thus, we have Inty(Cl{(V)) n
N Cly(W) = (. Since f is weakly-continuous, there exists an open set U < X con-
taining x such that f(U) = Cly,(W). Therefore, we obtain f(U) n Inty(Cly(V)) = 0

Remark 1. It is obvious that if a function has the property (P), then the graph is
closed. The converse is not necessarily true, however, as the following example due
to P. KosTYRKO [3] shows.

Example 1. Let X and Y be the sets of positive integers. Let X have the discrete
topology, Y have the cofinite topology and f:X — Y be the identity mapping.
Then, although G(f) is closed, f does not hold the property (P).

Corollary 1. If f:X — Y is weakly-continuous and Y is Hausdorff, then G(f)
is closed.

R. V. FuLLER showed that if f: X — Y has the closed graph, then the inverse
image f~'(K) of each compact set K of Y is closed in X [2, Theorem 3.6]. We shall
obtain an analogous result to this theorem.

Theorem 2. If f:X — Y has the property (P), then the inverse image f~'(K)
of each N-closed set K of Yis closed in X.

Proof. Assume that there exists a N-closed set K = Y such that f~(K) is not
closed in X. Then, there exists a point x € Cly(f ~!(K)) — f~'(K). Since f(x) ¢ K, for
each y € K we have (x, y) ¢ G(f). Therefore, there exist open sets U,(x) < X and
V(y) = Y containing x and y, respectively, such that f(U(x)) n Int,(Cly(V(»))) = 0.
The family {V(y) | y €K} is a cover of K by open sets of Y. Since K is N-closed, there

exist a finite number of points y;, y,, ..., y, in K such that K = U Inty(Cly(V(y,)))
Now, put U = ﬂ »/(x). Then we obtain f(U) AK = 0. On the other hand, since
x € Cly(f ~1(K)) we have f(U)nK + 0 because U is an open set containing x.

This is a contradiction.
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Remark 2. The converse to Theorem 2 is not always true, as Example 1 shows.

Corollary 2. Let Y be a Hausdorff space such that every closed set is N-closed.
If f : X - Y is weakly-continuous, then it is continuous.

Proof. This is an immediate consequence of Theorem 1 and Theorem 2.

In [6, Theorem 7], it is shown that if Y is a rim-compact space and f:X - Y
is an almost-continuous function with the closed graph, then f is continuous. We
shall show that “‘almost-continuous” in this theorem can be replaced by “weakly-
continuous™.

Theorem 3. If Y is a rim-compact space and f:X — Y is a weakly-continuous
function with the closed graph, then f is continuous.

Proof. Let x e X and V be any open set of Y containing f(x). Since Y is rim-
compact, there exists an open set W < Y such that f(x)e W < V and the frontier
Fr(W) is compact. It is obvious that f(x) ¢ Fr(W). Thus, for each y € Fr(W), we have
(x, ») ¢ G(f). Since G(f) is closed, there exist open sets U,(x) = X and V(y) = Y
containing x and y, respectively, such that f(U,(x)) n ¥(y) = 9. The family {V(y) | ye
€ Fr(W)} is a cover of Fr(W) by open sets of Y. Since Fr(W) is compact, there exist

a finite number of points yy, y,, ..., y, in Fi(W) such that U V(y;) > Fr(W). Now,
since f is weakly-continuous, there exists an open set U, = J;lcontaining x such that
f(Uo) = Cly(W). Put U = Uy N [{f\ U, ,[(x)], then U is an open set containing x
such that "
10) 0 (¥ = W) = (V) 2 Fi(W) < US0) 0 V(3) < US(U,,9) 0 V(3,) = 9.

This shows that f(U) = Vand hence f is continuous.

Theorem 4. Every rim-compact Hausdorff space is regular.

Proof. This proof is similar to that of Theorem 3.

Corollary 3. If Y is rim-compact Hausdorff and f : X — Y is weakly-continuous,
then f is continuous.
Proof. This follows immediately from [4, Theorem 2].

In [6, Theorem 8], it is shown that if f is an almost-continuous function of a first
countable space into a countably compact Hausdorff space, then f is continuous.
The following theorem shows that ‘““almost-continuous” in this result can be replaced
by “weakly-continuous”.

Theorem 5. Let X be a first countable space and Y a countably compact Hausdorff
space. If f : X — Y is weakly-continuous, then f is continuous.

Proof. This is an immediate consequence of Corollary 1 and [5, Theorem 2].
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