

Werk

Label: Article **Jahr:** 1976

PURL: https://resolver.sub.uni-goettingen.de/purl?31311157X_0101 | log103

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

CERTAIN RELATION BETWEEN VECTOR FIELDS AND DISTRIBUTIONS ON A DIFFERENTIABLE MANIFOLD

Tomáš Klein, Zvolen

(Received September 9, 1975)

Let M be a differentiable manifold. Let X be a vector field on M and let Δ be a distribution of h-dimensional tangent subspaces on M.

In this paper we shall study some relations between the fields X and distribution Δ . In the following computations we use the calculus of jets, see [2].

1. Let $T_h^1(M)$ be the vector space of all h^1 -velocities on the manifold M, i.e. the space of all 1-jets of local mappings from R^h into M with the source $0 \in R^h$. Let X be a vector field on M and ${}^t\Phi$ its 1-parametric local group. Let us remind that the vector field X can be naturally prolonged to $T_h^1(M)$ according to the rule

$${}^{1}X(u) = j_0^{1}[j_0^{1}({}^{t}\Phi \cdot \varphi)], \text{ for } u \in T_h^{1}(M), \text{ where } u = j_0^{1}\varphi.$$

Let (x^i) , i = 1, 2, ..., n, be local coordinates on M, dim M = n; let (x^i, y^i_j) , j = 1, 2, ..., h, $h \le n$, be corresponding local coordinates on $T_h^1(M)$ and let

(1)
$${}^{1}X \equiv a^{i}(x) \, \partial/\partial x_{i} + b_{i}^{i} \, \partial/\partial y_{i}^{j}$$

be the prolongation of the vector field X to the manifold $T_h^1(M)$. To determine the components b_i^i let us remind that

$$T_h^1(M) \equiv (x^i, y_i^i) \equiv j_0^1 \varphi$$
, where $\varphi : R^h \to M$, i.e. $\varphi : x^i = \varphi^i(u^j)$.

The vector field X determines a local 1-parametric group ${}^t\Phi$ of transformations on M

$${}^{t}\Phi: \bar{x}^{k} = f^{k}(x^{i}, t) \text{ for } k = 1, 2, ..., n.$$

Then

$${}^{t}\Phi \cdot \varphi : \overline{x}^{k} = f^{k}(\varphi^{i}(u^{j}), t) \text{ and } j_{0}^{1}({}^{t}\Phi \cdot \varphi) \equiv \frac{\partial f^{k}}{\partial x^{i}} \cdot \frac{\partial x^{i}}{\partial u^{j}}.$$

Hence

$$j_{0t}^{1}[j_{0x}^{1}(^{t}\Phi\cdot\varphi)] \equiv \frac{\mathrm{d}}{\mathrm{d}t}\left(\frac{\partial f^{k}}{\partial x^{i}}\cdot\frac{\partial x^{i}}{\partial u^{j}}\right) = \frac{\partial}{\partial x^{i}}\left(\frac{\mathrm{d}f^{k}}{\mathrm{d}t}\right)y_{j}^{i} = \frac{\partial a^{k}}{\partial x^{i}}y_{j}^{i} \equiv b_{j}^{k}.$$

Consequently the vector field ${}^{1}X$ from (1) can be expressed in the form

(1')
$${}^{1}X \equiv a^{i}(x) \partial/\partial x_{i} + \frac{\partial a^{i}}{\partial x^{k}} y_{j}^{k} \partial/\partial y_{i}^{j}.$$

2. Let us consider a global cross-section

$$\bar{\Gamma}: M \to T_h^1(M) .$$

In local coordinates

$$\bar{\Gamma}: x^i = x^i, \quad y^i_i = f^i_i(x^k).$$

The restriction of the prolonged vector field ${}^{1}X$ to the submanifold $\bar{\Gamma}(M) \subset T_{h}^{1}(M)$ is given by

(3)
$${}^{1}X/\overline{\Gamma}(M) \equiv a^{i}(x) \partial/\partial x_{i} + \frac{\partial a^{i}}{\partial x^{\lambda}} f_{j}^{\lambda}(x^{k}) \partial/\partial y_{i}^{j}$$

for $\lambda = 1, 2, ..., n$.

Definition 1. A vector field X on M is said to be conjugate to the map $\overline{\Gamma}$ if

(4)
$$\bar{\Gamma}_*(X) \equiv {}^{1}X/\bar{\Gamma}(M) .$$

 $\bar{\Gamma}_*(X)$ is a vector field on $\bar{\Gamma}(M)$. Therefore, according to (2) and (3), its local expression is given by

(5)
$$\bar{\Gamma}_*(X) \equiv a^i(x) \, \partial/\partial x_i + a^k \frac{\partial f_j^i}{\partial x^k} \, \partial/\partial y_i^j.$$

Substituing from (3) and (5) into (4) we obtain

(6)
$$\frac{\partial a^i}{\partial x^{\lambda}} f^{\lambda}(x) = a^{\lambda} \frac{\partial f^i(x)}{\partial x^{\lambda}}.$$

The map (2) determines h vector fields X, on M with the local expressions

(7)
$$X_r = f_r^i(x) \, \partial/\partial x_i \quad \text{for} \quad r = 1, 2, ..., h.$$

When X is an arbitrary vector field conjugate to the map $\bar{\Gamma}$, we get

(8)
$$[X, X_r] = \left\{ \frac{\partial f_r^k(x)}{\partial x^i} \cdot a^i(x) - \frac{\partial a^k(x)}{\partial x^i} f_r^i(x) \right\} \partial/\partial x_k ,$$

where $[X, X_r]$ are Lie brackets.

By comparison of (6) and (8) we obtain

Lemma 1. A necessary and sufficient condition for a vector field X to be conjugate to the map $\bar{\Gamma}$ is that

$$[X, X_r] = 0$$
 for each $r = 1, 2, ..., h$.

3. Let $R T_h^1(M)$ denote the set of all regular h^1 -velocities on M. Obviously, $RT_h^1(M)$ is an open submanifold of the manifold $T_h^1(M)$. If X is a vector field on M then ${}^1X/R T_h^1(M)$ is a vector field on $R T_h^1(M)$. Let $K_h^1(M)$ denote the factor space of $RT_h^1(M)$ consisting of all classes of the form $Y \cdot L_h^1$, where Y is a regular h^1 -velocity on M and L_h^1 is the full linear transformation group of R^h . Let Δ be the distribution of h-dimensional tangent subspaces determined by a map $\Gamma: M \to K_h^1(M)$. We have the canonical projection $\varrho: R T_h^1(M) \to K_h^1(M)$. If ${}^t\Phi$ is the 1-parametric local group on M generated by the vector field X and if ${}^t\Phi_h^1$ is the 1-parametric local group on $R T_h^1(M)$ generated by the vector field ${}^1X/R T_h^1(M)$ then

(9)
$${}^t\Phi_h^1(u) = {}^t\Phi \cdot u \;, \quad u \in RT_h^1(M) \;.$$

Here the dot denotes the composition of jets. It follows from (9) that the map ${}^t\Phi_h^1$ preserves the classes Y. L_h^1 . Thus we can define a 1-parametric local group on $K_h^1(M)$ by the formula

$${}^{t}\overline{\Phi}_{h}^{1}:[v] \mapsto [{}^{t}\Phi\cdot v]$$

where $[v] \in K_h^1(M)$ denotes the class of $v \in R$ $T_h^1(M)$. The vector field \overline{X} on $K_h^1(M)$ induced by $\overline{\Phi}_h^1$ will be called the h^1 -tangent prolongation of the vector field X. Obviously we have

$$\varrho_*(^1X) = {}^1\overline{X} .$$

The map $\Gamma: M \to \Gamma(M)$ is a diffeomorfism and $\Gamma_*(X)$ is a vector field on $\Gamma(M) \subset K_h^1(M)$.

Definition 2. A vector field on M is said to be conjugate to the distribution Δ if $\Gamma_*(X) = {}^1\overline{X}/\Gamma(M)$.

Let us remark that A. Dekrét in [1] investigates the conjugacy of special vector fields and special distributions on the manifold T(M).

Definition 3. A vector field on M is called a subfield of the distribution Δ if $X(m) \in \Gamma_m$ for all $m \in M$.

Lemma 2. Suppose that, for each subfield Y of Δ , the Lie bracket [X, Y] is also a subfield of Δ . Then for each point $u \in M$ there is a neighbourhood $U \subset M$ and vector fields $X \equiv X_1, X_2, ..., X_{h+1}$ on U such that Δ is generated by $X_2, ..., X_{h+1}$ and $[X, X_s] = 0$ holds for s = 2, 3, ..., h + 1.

Proof. Let $u \in M$. Let $(U, x^1, x^2, ..., x^n)$ is a chart on M such that $X \equiv \partial/\partial x_1$ in the neighbourhood U of u. On U there are vector fields $X \equiv \partial/\partial x_1 \equiv Y_1, Y_2, ...$..., Y_{h+1} , where $Y_2, ..., Y_{h+1}$ generate the distribution Δ on U. Because [X, Y] is a subfield of Δ for each subfield Y of Δ we can see that $[Y_1, Y_{\alpha}]$ are subfields of Δ on U for $\alpha = 2, ..., h + 1$. Let

$$Y_1 \equiv X \equiv \partial/\partial x_1$$
, $Y_\alpha = a^i_\alpha \partial/\partial x_i$,

where a_{α}^{i} are real functions on U. The matrix $||a_{\alpha}^{i}||$ has rank h for each point $x \in U$. Suppose e.g. that det. $||a_{\alpha}^{s}|| \neq 0$. Let $||b_{s}^{\sigma}||$ denote the inverse if $||a_{\alpha}^{s}||$. Put

$$X_s = b_s^{\alpha} Y_{\alpha} = b_s^{\alpha} a_{\alpha}^i \partial/\partial x_i$$
.

Then

$$X_s = \partial/\partial x_s + b_s^{\alpha} a_{\alpha}^{\beta} \partial/\partial x_{\beta}$$
, where $\beta = 1, h + 2, ..., n$,

i.e.

(12)
$$X_s = \partial/\partial x_s + c_s^{\beta} \, \partial/\partial x_{\beta} \,.$$

Because [X, Y] is a subfield of Δ and the vector fields X_s generate the distribution Δ on U, we get

$$[X_1, X_{\alpha}] = \lambda_{\alpha}^s X_s = \lambda_{\alpha}^s \partial/\partial x_s + \lambda_{\alpha}^s c_s^{\beta} \partial/\partial x_{\beta}.$$

From (12) and (13) we derive

[X₁, X_s] =
$$\frac{\partial c_s^{\beta}}{\partial x_1} \partial/\partial x_{\beta}$$
.

By comparing (13) and (14) we obtain

$$\lambda_{\alpha}^{s}=0.$$

Finally, substituting (15) into (13) we get $[X, X_s] = 0$, q.e.d.

Definition 4. The map $\bar{\Gamma}: M \to RT_h^1(M)$ is called related to the distribution Δ given by the map $\Gamma: M \to K_h^1(M)$ if $\Gamma = \varrho \cdot \bar{\Gamma}$.

Lemma 3. Let the map $\overline{\Gamma}$ be related to the distribution Δ , let a vector field X be conjugate to the map Γ . Then X is conjugate to the distribution Δ .

The proof follows from (11).

Lemma 4. If the distribution Δ is conjugate to the field X then there is locally a map $\overline{\Gamma}$ from M into $RT_h^1(M)$ which is releated to the distribution Δ and conjugate to the field X.

The proof follows from the definition of $K_h^1(M)$.

Theorem. Let Δ be a distribution on a manifold M given by a map $\Gamma: M \to K^1_h(M)$. Let X be a vector field on M and Y a vector subfield of Δ . Then a necessary and sufficient condition for X to be conjugate with Δ is that [X, Y] is a subfield of Δ for each subfield Y.

Proof. Let X satisfy the condition that [X, Y] is a subfield of Δ for each subfield Y. According to Lemma 2 there are vector fields X_s such that $[X, X_s] = 0$. The vector fields X_2, \ldots, X_{h+1} determine uniquely the map $\bar{\Gamma}: M \to RT_h^1(M)$. From Lemma 1 it follows that $\bar{\Gamma}$ is conjugate with X. Lemma 3 implies that Δ is conjugate with X, too.