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Casopis pro pEstovini matematiky, ro¥. 101 (1976), Praha

A SIMPLE PROOF OF CAUCHY THEOREM

ILsa CerNY, Praha
(Received August 26, 1975)

Our aim is to prove the following assertion:

Cauthy Theorem. If I' is a cycle homologic with 0 in a region Q and if a function F
is holomoprhic in Q, then [ F = 0.

Let us first explain the necessary notions and notation: € and R denote respectively
the sets of all (finite) complex and real numbers. Re z and Im z denote respectively
the real and the imaginary parts of a number ze C. A continuous mapping ¢ :
: {a, B = C (where <o, ) = R) for which the supremum I(¢) of numbers

Y |o(t) — @(ti-y), @ =1to <ty <...<t,=p is finite, is called a curve. If
k=1

@ : {a, B) — C is a curve, then we denote {¢) = ¢({«, B)). The curvilinear integral
L,F of a continuous function F : {¢) — C over a curve ¢ : {a, B> — C is defined
to be the Stieltjes integral [ (F o @) dp. The index of a point { € C — (@) with
respect to a closed curve ¢ is denoted by ind,, { (a closed curve is a curve ¢ : {a, B> —
— C for which ¢(«) = ¢(B)). A region is an open connected set 2 = C. Any finite

system I' = {@,, ..., ¢,} of closed curves satisfying <I') = |J {¢,> = Q is called
k=1
acyclein Q. The index of a point { € C — (I') with respect to a cycle I' is then defined

by the relation ind { =xz'1ind"" {, the curvilinear integral of a continuous function
F :{I'y = C over a cycle T is defined by [ F =§l Jo. F; we set similarly I(T') =
= i l((p,,). If I' is a cycle in Q and ind { = O for every { € C — Q, then the cycle I'
is ;:11d to be homologic with 0 in Q. A set

(1) ) ‘Q={z;a§Rez§ﬂ,y§Imz§6}

with @ < B, y < d is called a rectangle. Oriente_d sides of a rectangle Q as well as the
oriented boundary (Q) of a rectangle Q are curves defined as usual (see [1], Introduc-
tion, § 8); the fact that '
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. 1 if int Q!
@ niat= (5 beely

will be needed in the sequel (see [1], Chap. 11, (4.7)), as well as the assertion

(3) if A and A* are oriented sides of rectangles Q and Q* respectively, satisfying
(Ay = {A*),int Q N int Q* = @, then [, f = — [,. f for any continuous function
f . <ﬂ.> - C.

(This follows immediately from the definition of the oriented side of a rectangle.)

IfM,N c Cand ®: M x N — C, then &(-, {) means for every { € N the mapping
of the set M into C assuming at a point z € M the value &(z, {); the mapping &(z, *)
of the set N for z € M is defined similarly.

Proof of the Cauchy Theorem. In what follows Q stands always for a fixed
region, F is a fixed function holomorphic in Q. For the sake of brevity we shall write

@ o0 = £

the definition domain of the function will be always evident from the context.

We shall prove the Cauchy Theorem in the above form under the assumption that
the theorem as well as the Cauchy Formula were already proved for a rectangle
QcQ:

(5) If Q = @ is a rectangle, then [ F =0 and [ ®(*, ) = 27i F({)indg, ¢
for (e Q — 0Q.

(For a proof of the Cauchy Theorem for a rectangle as well as a proof of the identity
fi (-, ¢) = 2mi F({) for { int Q see [1], Chap. II, §§ 4 and 5; the identity
fa @(+, {) = 2ni F({) indg) { = 0 for { € Q — Q follows by virtue of the Cauchy
Theorem applied to the function @(+, {) and the region Q — {{} in which this function
is holomorphic.)

Let I' be a cycle homologic with 0 in 2 and denote

(6) N ={z;ind;z # 0} LU (T).

Since the set C — N is the union of all components of the set € — (I') with ind, = 0,
it is open. Since ind, z = 0 for sufficiently large |z|, the set N is bounded. Hence N
is a compact subset of the region Q and there exists a 6 > 0 so that

(7 dist(z, N)?) <26 =>z€Q.-

1) int M denotes the interior of a set M — C while M denotes its boundary.

2) If ze C and @ + M C, then dist (z, M) = inf |z — w|.
weM
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Let &, be the system of all squares of the form
(8) {z;(m —1)6 < Rez < mb, (n —1)6 £ Imz < nd}

where m, n age integers. Let & be the system of all squares Q € ¥, satisfying

Q@ NN # 0. With regard to U @ = C and to (7) we have
QeSo

(9) NcyQcQ.
Qe¥
Since the set N is bounded, the system & is finite.
Let us divide the system J of all oriented sides of all squares Q € & into two
subsystems: The system J, let consist of all curves'A for which the segment (1)

is a side of precisely one square from &, and let 7, =  — 7 ;. According to (3)
obv:ously

w Y| r=X\|r=x J.f for any continuous function f: |J dQ - C;

Qe& Q) Aed |4 ied 1 Ja Qe¥

by virtue of (5) we have

(11) =17 J' H-t) forevers Lelint;
: ' 2ni ge¥ J (g S Qes
Since the function &(+, {) is continuous in |J 4Q for ¢ € |J int Q, (10) and (11) imply
o Qe¥ . Qe .
(12) F(¢) = 2 Y ¢( &) forevery (el)intQ.
27i 2e7, Qe

However, the function on the right'hand side of the equality (12) is continuous in

C — U <4) by the well-known theorems; since the function F is continuous in £,
Aed

(12) implies that

1 .
(13) FO)=— Y J- &(-,¢) forevery (elUQ— U <.
27i 267, J Qe ieTy
If A is an oriented side of a square Q € & and if {A) N N = 0, then both squares
from &, whose side is the segment (1) belong to & and consequently, the curve A
belongs to J,. This implies in virtue of (9) that

(14) : U —-N
ied

so that according to the definition of the set N .

(15) ze Y {A)=indrz =0.

Aed
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