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Introduction. The use, of the method of integral equations for solving boundary
value problems for the Laplace equation dates back to the end of the nineteenth
century. In that period, however, very strong smoothness restrictions on boundaries
of domains in question were imposed. In 1919, J. RADoN [10] studied the Dirichlet
and the Neumann problems for plane domains bounded by curves of bounded rota-
tion, not necessarily smooth. He investigated properties of the corresponding integral
operator and evaluated its Fredholm radius (for the definition see below) in depen-
dence on the character of angular points of the curve. General results for the plane
case were obtained by J. KRAL [2] 1965 (compare also [5] where further references
are found). The Neumann problem with a weak characterization of the boundary
values was investigated by J. Kral [3] 1966 and Ju. D. BuraGo, V. G. Mazia [1]
1967 for general domains in high-dimensional Euclidean ‘spaces.

In order to recall briefly some results of [3] we adopt the following notation.
Suppose that M is an arbitrary open set with compact boundary 0M # 0 in the
Euclidean m-space R™ (m > 1). Given xe R™, 0eI' = {ze R™; |z| = 1} and 0 <
<r= +oo, let n)(f, x) stand for the total number of all points ye Hj(x) =
= {x + 00; 0 < ¢ < r} such that every neighborhood of y meets both Hy(x) n M
and Hy(x) — M in a set of positive linear measure. (Such a point y is termed a hit
of Hg(x) on M.) The function 6 — n}(6, x) is a Baire function and one may put

vM(x) = f n¥(0, x) dH,,_(6)
r
where H,,_, denotes the (m — 1)-dimensional Hausdorff measure. We shall denote
V3! = lim sup v¥(y).
r-»0+ yedM
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Let us fix now an open set G with compact boundary B % @ and denote by C'(B)
the Banach space of all finite signed Borel measures with support in B. With each
u € C'(B) we associate its potential

Un(x) = Lp(x — y) du(y)

corresponding to the kernel p(z) = |z|>™™/(m — 2) or p(z) = log (1/|z|) according
to m > 2 or m =2 and we form the distribution NsUp (termed the generalized
normal derivative of Uy) over the space 2 of all infinitely differentiable functions ¢
with compact support in R™ defining

{p,NsUp) = J- grad ¢(x) . grad Up(x) dx .
G

It follows from the results of [3], [4] that
(1) Vs <o

is a necessary and sufficient condition for the representability of NoUu by means

of an element of C'(B) for any u € C'(B). In connection with the applicability of the
Riesz-Schauder theory to the operator equation

(2) NGUIJ =V
over C'(B) (under the hypothesis (1)) it is useful to write (2) in the form
[3AI' + (NoU — 3AI)] p = »

(where A = H,,_,(I') and I’ stands for the identity operator on C'(B)) and consider
the quantity

€)) o(NgU — 34I') = igf INeU — 341’ — 0|

where Q varies over the space of all compact operators acting on C’(B). Note that the

reciprocal value of the quantity (3) is usually called the Fredholm radius of the
operator NoU — 4AI' and that the inequality

o(NgU — 3AI') < 34

permits one to apply the Fredholm theorems to the equation (2). The quantity (3)
is evaluated in [3] in terms of v7(x) and the m-dimensional density dg(x) of the set G
at x and also the relations between analytical properties of the operator NoU — 1AI’

and geometrical properties of G are studied there. If, in particular, the interior of the
closure G of G coincides with G, then

o(NgU — 34I') = V¢

(see [3], Lemma 3.4, Theorem 3.6 and [8], Lemma 30, Theorems 27, 29).
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The main objective of this note is to evaluate w(NgU — $AI') in terms of dg
for convex G, which shows that boundary value problems for convex sets can always
be treated by means of the Fredholm method. This follows from the following

Theorem. Let G = R™ be an open convex set with compact boundary B =+ (.
Then there is y, € B such that

() @lNeU — 3AT) = sup AY ~ dg() = AL ~ o) < 4.

Corollary. The operator NoU — Al is compact if and only if dg(y) = 4 for any
yE€B.

The formula (4) represents an m-dimensional analog for convex sets of Radon’s
result on the Fredholm radius of the corresponding operator for sets bounded by
curves of bounded rotation (cf. also [11], Chap. V, No. 91).

The relations between convexity of a set and positiveness of an operator of the
generalized double layer potential is also studied and sets for which the equality
v = Ad,; holds on M are characterized (see Theorems 11 and 14).

1. Notation. For an open set M = R™ and z € R™ we denote

QM(z) ={0erl; Hy(z) n M + 0}
and define
a"(z) = Hoo (07(2))-

In what follows, G will be a set satisfying the hypotheses of the above theorem. It
is clear that it suffices to prove (4) under the additional assumption that G contains
the origin. Hence we shall suppose that 0 € G and for ¢ > 0 we set

G, ={oy; yeG}.
2. Lemma. Let 0 < 0 £ 1t £ 1 and xe R™. Then

a%(x) = a%(x), oljrln—ac"(x) = a%x).

Proof follows easily from the relations Q%(x) > Q(x) and

U 0%(x) = 0%(x).

ee(0,1)

3. Lemma. If g€ (O, 1), then the function a® is continuous on R™ — 59
Proof. Since G, is convex, we have

a%(x) = $v8(x) < 44, xeR" - G,.
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Using formula (2.16) of Lemma 2.12 in [3], we obtain

aG°(x) = 1"’ ln_(X)__(:y:_x_)_l de_l(y) s xe R™ — 6‘;’
2, |y ==

which shows that the function a® is continuous on R™ — G,. (We have denoted
by n(y) the Federer normal of G, at y.)
4. Proposition. a® is a lower semicontinuous function on R™.

Proof. It follows from Lemmas 2, 3 that the restriction of a® to R™ — G is a lower
semicontinuous function. Since we have for any z € G and x € R"

a%(x) £ 4 = a%(2),
we see that a¢ is lower semicontinuous on R™.

5. Corollary. d; is a lower semicontinuous function on B and there is y, € B
such that

yeB
Proof. Proposition 2.6 and Lemma 2.7 in [3] imply the equality
(5) a%(x) = Adgx), xeB.

By Proposition 4, d; is a lower semicontinuous function on B and, consequently,
there is y, € B such that inf dg(y) = dg(y,). By Lemma 2,

yeB

dG('yo) > A7 a%(yy) >0
for any o € (0, 1).
6. Lemma. For any ¢ > 0 there is ¢ > 1 such that for each z € B the inequality
(6) a%(oz) = Ainfdg(y) — ¢
yeB
holds.

Proof. Suppose that the assertion of the lemma is false. Then there is an ¢ > 0
and points y, € B such that for z, = (1 + 1/n) y, we have

a%(z,) < Ainfdg(y) — .
yeB

Since the set B is compact we may suppose y, — yo € B. Then z, - y, and

lim inf a%(z,) < Ainfdg(y) — ¢ < Adg(yo) — €,
yeB

n—ow

which contradicts the fact that a® is lower semicontinuous at y, (see also (5)).
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7. Proof of the theorem. We know (see Lemma 3.4, Theorem 3.6 in [3] and
Theorems 27,29 and Lemma 30 in [8]) that

o(NgU — 3AI') = lim sup v§(y) =

r—+0+ yeB

= lim sup [4]} — dg(¥)| + v¢(¥)] 2 SUP A% - dg(v)) -

r—»0+ yeB
Hence in order to prove (4) it is sufficient to establish only the inequality

(7 sup A(3 — dg(y)) 2 lim sup v¥(y)

yeB r—+0+ yeB

because the rest follows by Corollary 5.
Fix ¢ > 0 and choose ¢ > 1 by Lemma 6. Since 0G, and G are disjoint compact
sets we can find r > 0 such that

dist (y, G) 2 re

for any y € 0G,. Consider now z € B. The set G, being convex, there is a closed half-
space P such that ¢z € 9P and G, = P.If 0 € I' is chosen in such a way that Hy(¢z) n
NP =0, then Hy(ez) n G, = 0. Further, if 6eI' and Hy(¢z) n G * @, then
H{(ez) = G,. Hence for these 0’s there is no hit of H{'(¢z) on G, and we conclude
that

®) of2(07) S 34 — a¥(c2).
Since obviously v3¢(ez) = v{(z), (8) and (6) yield
v¥(z) S 44 — a%(gz) S 34 - 4 ing dg(y) + ¢
ye
Consequently,

lim sup vf(y) < sup v(y) = sup A} — dg(y)) + ¢

r—~0+ yeB

which proves (7).
The proof of the theorem is complete.

8. Notation. For x € R™ and r > 0 we denote Q(x) = {zeR™ |x — z| < r}. In
the rest of this note we shall suppose that M is a non-empty open set with compact
boundary,

) | oM = §R™ — M)
and
(100 . Vo' < .
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Note that by [4], remark on p. 596, (10) implies
sup vi(y) < .
yedM

2 will stand for the Banach space of all bounded Baire functions on dM equipped
with the usual supremum norm. Fix ze R™ and @ e I'. As in [3] we put for t > 0

s(t; z,0) = ¢ (= £1),
if there is 6 > 0 such that
z+(t+o01)0eR" -~ M, z+(t—o1)0eM

for a.e. T€(0, 8); otherwise we set s(t; z, 8) = 0. Of course, if s(t; z, 6) % 0, then
z + 10 is a hit of H,‘,”(z) on M. Consequently, we can define as in Lemma 2.5 of [3]
for any fe #

Wf(z) = jr{:zof(z + 10) s(t; z, 0)} dH,,—,(0), zedM.

It turns out that the function z — Wf(z) is a bounded Baire function and
W:f W

is a bounded linear operator acting on # (see [3], Sec. 2 and [7], Sec. 7). It should
be noted here that Wf is a generalized double layer potential — see Sec. 2 in [3]

Let us finally denote by f, the function identically equal to 1 on dM and recall
that, by Lemma 2.2 in [3],

(11) veo(2) ="sup {|Wy(2); g€ #, |g| < 1}
and
(12) A dy(2) = Wio(2)

provided M is bounded (see Proposition 2.6 and Lemma 2.7 in [3]).

9. Lemma. Let D = R™ be an open bounded set, z€ R™ and let H, stand for
the linear measure. For 0 € I' define

9(6) = H(Hg(z) n D).
Then g is a lower semicontinuous function on I'.

Proof. Fix 6,eTl and ¢ < g(00). There is a finite number of disjoint closed
segments contained in Hg)(z) n D such that the sum of lengths of these segments
exceeds c. Obviously, for any 0 € I' belonging to a suitably chosen neighborhood
of 6, we have g(0) > c.
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10. Lemma. Suppose that the set M is not convex. Then there is z € 0M with

dy(z) = %, a Borel set T', = I', H,,_4(I";) > 0, and a strictly positive real function ¢
defined on I', such that

M, = {z + 0(0)6; 0cT)
is a Borel subset of 0M and s(¢(0); z, 0) = —1 for any 0 € I,.
Proof. Since M is not convex, (9) holds and the set
{xedM; dy(x) =%

is dense in 0M (see Lemma 14 in [8]), we can find z € M with dy(z) = %, 0, €T,
0 < t° < ! and r > 0 such that

Q(z+1°0)cR"— M, Qfz+1t0)cM.
According to the hypothesis v%(z) < oo so that
(13) n¥0,z) <

for H,_; — a.e. 0eI. Let I', = I be a Borel set such that H,,_,(I';) = 0 and that
for each 6 € I' — I', the relation (13) holds. Observe that for these 6’s the set Hg’(z) N
N M is Hy-equivalent to a finite union of disjoint open segments. Denote

ry={0er; HY(z) n Q,(z + 1'0,) + 0}

and put I', = I'y — I',. Obviously, I', is a Borel set and H,,_(I",) > 0.
Let us now fix € I', and put

@(0) = sup {t > 1% {z + 00; 0€(t°, 1)} " M = 0}.

Of course, t° < ¢(0) < t' and one easily verifies that z + ¢(0) 0 is a hit of Hg(z)
on M and there is 6 > 0 such that

H({z +10; p(f) <t <t+6} —M)=0.

Consequently, s(¢(6); z, 0) = —1 for each 0 eT,.

We intend to show that ¢ is a Baire function on I',. The proof of this fact is pat-
terned after Mafik’s proof of Lemmas 27, 28 in [6].

For 0 < a < b we denote Q, , = Q,(z) — Q,(z) and
N, ={0el; H(HP(z) nM nQ,,)=b —a}.

It follows from Lemma 9 (applied to D = M n Q,,) that N, , is a Borel set. One
easily verifies that for any c € R,

{0er,; ¢(0) <c} =UN,,
ab
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where a, b are rational, t° < a < b < ¢. We see that ¢ is a Baire function and the
function  on I, x R' defined by

v([0, 1]) = |e(0) — 1|
is consequently a Baire function on I', x R!. Consider now the mapping
@ :I x (0,0) > R™ — {z}
defined by
o([0,t]) =z + 10.

Then & is a homeomorphism and ®(y _,(0)) is thus a Borel subset of R™. Putting
M, = &(y _,(0)), we check easily that z, I',, ¢, M, have the desired properties.

11. Theorem. The following conditions are equivalent to each other:

(i) M is convex.

(ii) The operator W is positive.

Proof. If M is convex, then evidently s(t; z, 0) = 0 for any ze oM, t > 0, 0€eT.
Consequently, Wf = 0 on M provided fe 4, f = 0 on oM.

Let M be non-convex and let z, M, I',, ¢ have the same meaning as in Lemma 10.

Denote by f; the function equal to 1 on M, and zero elsewhere on dM. Then, by
Lemma 10, f; € # and since H,,_4(I";) > 0,

(14 Wi(z) = Lfl(z + 0(0) 0) s(0(6); 2, 0) dHyy1(0) = —Hyp_1(I2) < 0

and we conclude that Wis not a positive operator.
The proof of the theorem is complete.

12. Remark. Note that if M is not convex and f; has the same meaning as above,
then Wf, is strictly negative on a set of positive H,,_; measure. Indeed, observing
that Q,i(z) N M, = 0, we assert that Wf; is continuous on Q,0(z) (cf. Lemma 2.12
in [3]) and (14) implies that Wf; is strictly negative on a ball Q with centre z.
H,—1(Q n aM) > 0 follows from the proof of Lemma 14 in [8] (see inequality (45)).

13. Lemma. Suppose that M is bounded and non-convex. Then there is z € 0M
such that
(15) v¥(z) > Ady(z) = 34.

Proof. Let us take z as in Lemma 10 and let f; have the same meaning as above.
We have dj(z) = 4 and |f, — 2f;| < 1 (recall that f, = 1 on dM). Since W f,(z) < 0
(see (14)) we conclude

Wio(z) < W(fo = 2f1)(2) S sup {|Wg(2)); g€ B, |g] < 1}
This yields (15) by (11) and (12).
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14. Theorem. The following conditions are equivalent.

(i) v¥%(z) = A dy(z) for any z e oM.

(ii) Either M is convex or M’ = R™ — M is convex and dy(z) =} for any
zedM.

Proof. Let us start with the following remark. Since both M and M’ are non-void,
we have v¥(z) > 0 for any z e M. Consequently, if either (i) holds or dy = %
on M, then the m-dimensional Lebesgue measure of dM is zero. Indeed, in the
other case, by the well-known density theorem, there would be at least one z € M
with dy(z) = 0. It follows that

(16) dylz) = 1 — dy(z), v¥%'(z) = v¥%(z), zeoM,

by Proposition 1.6 in [3].
First we shall suppose that M is convex. Then, by Theorem 11, W is a positive
operator. Consequently,

Wio(z) = sup{|Wg(z)|; g€ B, |g| = 1}

and (i) follows by (11) and (12).
Let M’ be convex and dy(z) = + whenever z € M = 0M’. We have just proved
that
M'(z) = Ady(2z), zeoM',

and (i) is a consequence of (16). This completes the proof of the implication (ii) = (i).

Suppose now that (i) is true. If M is bounded, then M is necessarily convex, since
otherwise (i) would be violated in virtue of Lemma 13. It remains to consider the case
that M is unbounded. In this case M’ is bounded and, if non-convex,

v¥(z) = v¥'(2) > Adpy(z) = 34 = Ady(2)

for a suitable ze M’ = M — a contradiction. We conclude that M’ is convex.
Since we have already established (ii) = (i) we have by (16)

v%'(2) = Ady(z) = A(l — dy(z)), zeoM,

and, by the hypothesis,
v¥(z) = Ady(z), zeoM.

Using (16) once more, we obtain
Ady(z) = A(1 — dpy(2)),

which yields dy(z) = 4 for any z € IM.
The proof of the theorem is complete.
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