

Werk

Label: Table of literature references

Jahr: 1975

PURL: https://resolver.sub.uni-goettingen.de/purl?31311157X_0100|log86

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

too. Therefore $A \cup B \neq \emptyset$. If $A = \emptyset$, then any line bu_0 where $b \in B$ is superfluous as can be verified (cf. Fig. 9). If $B = \emptyset$, then any line u_1a where $a \in A$ is superfluous. Thus $A \neq \emptyset$, $B \neq \emptyset$, and $C \neq \emptyset$. Then, however, any line ba, where $a \in A$ and $b \in B$, appears to be superfluous. Hence the case m = 1 is impossible.

(II) $m \geq 2$.

As the path $u_0u_1 ldots u_m$ is a shortest $w_1 - w_2$ path, there is no line u_iu_j whenever $j-i \geq 2$. According to (1), there is no line u_ib with $i \leq k-1$, $b \in B$, and no line au_j with $a \in A$, $j \geq k+2$. These facts are illustrated by Fig. 10. (In this figure, any full line has priority over a dashed line, e.g. if k=0, then all lines u_ka with $a \in A$ exist.) If $A=\emptyset$, then $d_{T-u_0u_1}(u_0,u_1)=\infty$, i.e., by (2) and (3) we have m=1 which contradicts our assumption. Therefore $A \neq \emptyset$. Analogously $B \neq \emptyset$ (for otherwise it would be $d_{T-u_{m-1}u_m}(u_{m-1},u_m)=\infty$).

Now we assert that any line $z = b_0 a_0$, where $a_0 \in A$ and $b_0 \in B$, is superfluous. As $d_{T-z}(b, a) \le 2$ for any $a \in A$ and any $b \in B$, it is sufficient to verify that

- (i) for any path of the form b_0a_0v , where $v \notin A$, there is a $b_0 v$ path of length not exceeding 2 and not containing the line z. This is clear (cf. Fig. 10) except the case $v = u_{k+1}$ with k+1 = m-1. In this case, however, there is no line u_kw with $w \in B$ (existence of such line would contradict (1)). Thus $b_0u_ku_{k+1}$ is the required path.
- (ii) for any path of the form vb_0a_0 , where $v \notin B$ there is a $v-a_0$ path of length not exceeding 2 and not containing the line z. This can be easily verified (cf. Fig. 10) except the case $v=u_1=u_k$. In this case, however, there is no line wu_2 with $w \in A$ (see (1)). So we can take the path $u_1u_2a_0$.

Hence neither the case $m \ge 2$ is possible and the theorem is proved.

Thus we have the full characterization of all e-critical tournaments. Nevertheless, we have not succeeded in proving or disproving the existence of a v-critical tournament with diameter $d \ge 3$. We conjecture that there exists an integer d_0 such that there is no v-critical tournament with diameter $d \ge d_0$.

References

- [1] Harary, F.: Graph theory. Addison-Wesley, Reading 1969.
- [2] Moon, J. W.: Topics on tournaments. Holt, Rinehart and Winston, New York 1968.
- [3] Plesnik, J.: Critical graphs of given diameter. Acta Fac. R. N. Univ. Math. 30 (1975), 71-93.

Author's address: 816 31 Bratislava, Mlynská dolina, (Prírodovedecká fakulta UK).