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COMPATIBLE RELATIONS ON ALGEBRAS

IvaN CHAJDA, Pierov, and BOHDAN ZELINKA, Liberec

(Received May 8, 1974)

The concept of tolerance relation compatible with a given algebra is studied in
[3], [4], [5] A tolerance relation is (according to [1], [2]) a reflexive and symmetric
binary relation. Here we shall extend the definition of compatibility onto relations
which are not tolerances in general.

Let an algebra A = {4, #) with finitary operations be given. (Here A denotes
the set of elements of 2 and & denotes the set of operations.) Let ¢ be a binary rela-
tion on A. We say that g is compatible with the algebra 21, if and only if the following
condition is satisfied: If f € & is an n-ary operation (n is a positive integer), xy, ..., X,
V1> .- Y are elements of 4, (x; y;)ee for i =1,...,n, then (f(xy, ..., X,),
(1, o0 ) €0

We shall prove several theorems; some of them are generalizations of the results
from [3] and [4]. When we speak about an algebra, we always mean an algebra
in which all operations are finitary.

Even an empty relation on A can be considered a relation compatible with 2.
If ¢ is a binary relation on a set 4, then by o* we denote the relation {(y, x) | x € 4,
yed, (x,y)eot

Theorem 1. Let A = (A, &) be an algebra, let g, 0, be two relations on A com-
patible with . Then g; N @,, o* are relations compatible with 2.

Proof. Let f € & be an n-ary operation, let xq, ..., X,, 1, ..., V, be elements of A
such that (x;, y;) €0y N, fori =1,...,n. As(x;, y;) €, fori = 1,..., n, we have
(fGx1s ooes Xn)y f(gs o Yu)) €01 As (x5 y)Ee@, for i=1,..,n we have
(f(x15 s Xn)y f(res.s Ya)) €0y Thus (f(xy, ..., %), f(¥15 .- ¥n) €01 N @, and
91 N 0, is a relation compatible with A. The assertion for o* is evident.

Theorem 2. Let A = (A, F) be an algebra, let ¢ be a reflexive relation on A
compatible with . Then ¢ N @* is a tolerance compatible with .

Proof. The reflexivity and the symmetry of ¢ n g* is evident. Its compatibility
with U follows from Theorem 1.
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Theorem 3. Let A = {A, F) be an algebra, let 9 be a reflexive and transitive
relation (i.e. a quasi-ordering) on A compatible with A. Then ¢ N o* is a con-
gruence on .

Proof is analogous to that of Theorem 2.

Let the product g0, of two binary relations ¢y, ¢, on the same set A be defined
so that (x, y) € 0,0, for x € A, y € A, if and only if there exists z € A such that (x, z) e
€ 0, (z, y) € @,. We can define also the n-th power of a binary relation ¢ so that
0" =oforn=1and g" = go" ' forn = 2.

It is easy to prove the following

Theorem 4. Let W = {A, &) be an algebra, let g1, 0, be two relationson A com-
patible with . Then their product 9,0, is compatible with 2.

Now we shall prove

Theorem 5. Let A = (A, F) be an algebra, let {gj}}”:l be a sequence of com-

patible relations on W such that ¢; < @; for every positive integer j. Then
0

U ¢; = ¢ is compatible relation on .
j=1

Proof. Let f € F be an n-ary operation, let x, ..., X,, ¥y, ..., , be elements of 4
such that (x;, y;)eg for each i = 1,...,n. Then for each i = 1,...,n we have
(%, ¥:) € 0ji) for a positive integer j(i). Let j = max j(i). Then (x;, y;) € ¢; for each

1Zisn

i =1,...,, nand thus (f(x, ..., x,), f(¥1, ..., ya)) € ¢; € 0.

Theorem 6. Let A = (A, #) be an algebra, let ¢ be a reflexive relation on A
compatible with . Then the transitive hull oy of ¢ is compatible with .

o0
Proof. We have ¢or = | ¢’. According to Theorem 4 the relation o’ is compatible
j=1

with A for every positive integer j. As g is reflexive, we have ¢/ < ¢’**! for every posi-

@

tive integer j. Thus according to Theorem 5 the relation or = {J @’ is compatible

i=1
with 2.

Example 1. This example will show us that:

1) the reflexive hull and the symmetric hull of a relation compatible with 2 need
not be compatible with U;

2) the union of two relations compatible with % need not be compatible with 2.
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Let A be the semigroup with elements a, b, c, d, e, f, g, h given by the following
Cayley table:

a b c de f g h
ala e h h e h h h
ble b f h e f h h
clh f ¢c g h f g h
d|\h h g d h h g h
e|le e h h e h h h
flh f f h h f h h
glh h g g h h g h
h|\h h h h h h h h

Let ¢ = {(a, c), (b, d), (e, g)}. This is a compatible relation on UA. The reflexive
hull g of ¢ is not compatible with 2; we have (a, ) € gg, (¢, ¢) € g, ac = h,cc = ¢,
but (h, ¢) ¢ gg. This is also an example that the union of two compatible relations
on A need not be a compatible relation on A, because the reflexive hull of g is the
union of ¢ and of the relation of equality on A which is evidently also compatible
with . Also the symmetric hull ¢ U o* = {(a, c), (c, a), (b, d), (d, b), (e, 9), (9, €)}
is not compatible with U. We have (a,c)eo U o*, (d, b)eg U ¢*,ad = h, cb = f,
but (h, f) ¢ e U o*.

Example 2. This example will show that the reflexivity of ¢ in Theorem 6 is sub-
stantial.

Let A be the semigroup with elements a, b, c, d, e, f given by the following Cayley
table: '

a

b ¢ d e f
ala d f d f f
b|d b e d e f
c|f e c f e f
d|dd f df f
e|f e e f e f
fl\f rrrrr

Let ¢ = {(a, b), (b, ¢), (d, e)}. This is a compatible relation on A, evidently not
reflexive. The transitive hull of ¢ is ¢r = {(a, b), (b, ¢), (a, ¢), (d, e)}. We have
(a, b) e er, (a,c)e oy, aa = a, bc = e, but (a, ) ¢ or. Thus gy is not compatible
with 2.

Theorem 7. Let A = (A, F) be an algebra, let ¢ be a relation on A compatible
with . Let e be an idempotent element of U (i.e. such an element that f(e, e, ..., €) =
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= e for each fe F). The set A, of all elements x € A such that (e, x) € ¢ forms
a subalgebra of U.

Proof. Fori = 1, ..., nlet x; € A,, this means (e, x;) € ¢. If f € F is an n-ary opera-
tion, then (e, f(xy, ..., X)) = (f(e, ..., €), f(xy, ..., X,)) € ¢, because ¢ is compatible
with . This means f(x;, ..., x,) € 4,. As the elements x,, ..., x, and the operation f

were chosen arbitrarily, A, forms a subalgebra of 2.

Corollary 1. Let L be a lattice (or semilattice), let ¢ be a compatible relation on L.
Then for each x € L the set L, of all elements y € Lsuch that (x, y) € ¢ forms a sub-
lattice (or subsemilattice respectively) of L.

Remark. Theorem 7 implies immediately Theorem 11 from [3].

Theorem 8. Let G be a group, let ¢ be a compatible relation on G. Let g be reflexive.
The set N of all x € G satisfying (e, x) € ¢ is a normal subgroup of G.(The symbol e
denotes the unit of G.)

Proof. From Theorem 7 it follows that set N is a subgroup of G. Let x € N,
i.e. (e, x) € o. From the reflexivity of ¢ we obtain (z,z)e ¢ and (z7%,z"*) e g for
arbitrary z € G. From the compatibility of ¢ we obtain finally (e, z7*xz) = (z ez,
z7'xz) € g, thus z7'xz € N. Therefore N is a normal subgroup of G.

Remark. In [4] it is proved that each compatible relation on a group which is
reflexive and symmetric is also transitive, i.e., it is a congruence.

Theorem 9. Let G be an involutory group (i.e. x> = e for each x e G, where e
is the unit of G), let ¢ be a reflexive compatible relation on G. Then ¢ is a con-
gruence relation on G.

Proof. Let (x, y)eg for xe G, y e G. From the reflexivity of ¢ we have
(x*,x™")ee, (y~*, y~') e ¢ and from the compatibility of ¢ we have (e, x"'y) =
=(x"'x,x"'y)ee and thus (y™*, x™') = (ey™*,x"'yy~!) e ¢. But G is an invo-
lutory group; this means y~!' = y, x™! = x, thus (x, y) € ¢ implies (y, x) € 0. By
the theorem in [4] quoted in the above remark g is a congruence on G.

Theorem 10. Let L(v ) be a complete v -semilattice, let ¢ be a compatible relation
on L(v). Denote M(x) = V 'y for xe L(v). The mapping M which assigns the

(x,y)<e
element M(x) to any x € L(v) is an isotone mapping of L(v) into itself.

Proof. Let xe L(V), let ¢ be a compatible relation on L(v ). The existence of
M(x) for each x € L(v) follows from the completeness of L(v). Let x < y, i.e.
x v y=y. From the definition of M(x) we have (x, M(x))eo, (y, M(y))ee
(because L(v) is complete) and from the compatibility of ¢ we obtain (x v y,
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M(x) v M(y))e o therefore M(x) v M(y) is one factor in the join V =z =
(xvy,z)ee

= M(x v y). This means M(x) v M(y) 2 M(x v y). But x v y =y and thus

M(x) v M(y) £ M(y), which means M(x) < M(y).

Corollary 2. Let L(A) be a complete A-semilattice, let ¢ be a compatible relation
on L(A). Denote m(x) = A y for xe L(A). The mapping m which assigns the

(x,y)ee
element m(x) to any x € L(A) is an isotone mapping of L(A) into itself.

Proof of Corollary 2 is dual to that of Theorem 10.

Corollary 3. Let L be a complete lattice, let ¢ be a compatible relation on L.
Let M(x) and m(x) be defined as in Theorem 11 and Corollary 2. The mappings
M :x - M(x), m : x > m(x) are isotone mappings of L into itself.

Theorem 11. Let S be a semigroup, let ¢ be a compatible relation on S, let T be
a subsemigroup of S. The set oT of all elements x € S such that (x, x') € ¢ for some
x' € Tis a subsemigroup of S.

Proof. Let x € ¢T, y € ¢T. Then there exist elements x’ € T, y’ € T'such that (x, x') e
€0, (v, ') €. From the compatibility of ¢ we have (xy, x'y’)e¢. But x'y' e T,
because T'is a subsemigroup of S, thus xy € 9T and ¢T is a subsemigroup of S.

Theorem 12. Let S be a semigroup, let ¢ be a compatible relation on S. Let @
be reflexive. Let T be an ideal of S (right or left or two-sided). The set oT defined
in Theorem 11 is an ideal of the semigroup S (right or left or two-sided, respec-
tively).

Proof. Let x € T, let T be a left ideal of S. There exists x’ € T such that (x, x’) € o.
Let y € S; from the reflexivity of ¢ we have (y, y) e¢. From (x,x’) e ¢ and (y, y)ee
we obtain (xy, x'y) € 0. But x’y € T, because T is a left ideal of S. Therefore xy € oT
and oTis a left ideal of S. Analogously for right and two-sided ideals.

Theorem 13. Let R be a ring, let ¢ be a compatible relation on R, let O be the zero
element of R. Let ¢ be reflexive. The set Ry of all x € R such that (0, x)e ¢ (or
(x, O) € @) is an ideal of R.

Proof follows immediately from Theorems 12, 8 and 1.

For a ring whose additive group is involutory, the assumption that g is reflexive
is unnecessary. We obtain

Corollary 4. Let R be a ring whose additive group is involutory, let ¢ be a com-
patible relation on R. The set R, of all x e R for which (0, x) € ¢ (or (x, 0) € @)
holds (where O is the zero element of R) is a subring of the ring R.
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