

Werk

Label: Article **Jahr:** 1975

PURL: https://resolver.sub.uni-goettingen.de/purl?31311157X_0100|log83

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

COMPATIBLE RELATIONS ON ALGEBRAS

IVAN CHAJDA, Přerov, and Bohdan Zelinka, Liberec (Received May 8, 1974)

The concept of tolerance relation compatible with a given algebra is studied in [3], [4], [5]. A tolerance relation is (according to [1], [2]) a reflexive and symmetric binary relation. Here we shall extend the definition of compatibility onto relations which are not tolerances in general.

Let an algebra $\mathfrak{A} = \langle A, \mathscr{F} \rangle$ with finitary operations be given. (Here A denotes the set of elements of \mathfrak{A} and \mathscr{F} denotes the set of operations.) Let ϱ be a binary relation on A. We say that ϱ is compatible with the algebra \mathfrak{A} , if and only if the following condition is satisfied: If $f \in \mathscr{F}$ is an n-ary operation (n is a positive integer), x_1, \ldots, x_n , y_1, \ldots, y_n are elements of A, $(x_i, y_i) \in \varrho$ for $i = 1, \ldots, n$, then $(f(x_1, \ldots, x_n), f(y_1, \ldots, y_n)) \in \varrho$.

We shall prove several theorems; some of them are generalizations of the results from [3] and [4]. When we speak about an algebra, we always mean an algebra in which all operations are finitary.

Even an empty relation on \dot{A} can be considered a relation compatible with \mathfrak{A} . If ϱ is a binary relation on a set A, then by ϱ^* we denote the relation $\{(y, x) \mid x \in A, y \in A, (x, y) \in \varrho\}$.

Theorem 1. Let $\mathfrak{A} = \langle A, \mathscr{F} \rangle$ be an algebra, let ϱ_1, ϱ_2 be two relations on A compatible with \mathfrak{A} . Then $\varrho_1 \cap \varrho_2, \varrho^*$ are relations compatible with \mathfrak{A} .

Proof. Let $f \in \mathcal{F}$ be an *n*-ary operation, let $x_1, \ldots, x_n, y_1, \ldots, y_n$ be elements of A such that $(x_i, y_i) \in \varrho_1 \cap \varrho_2$ for $i = 1, \ldots, n$. As $(x_i, y_i) \in \varrho_1$ for $i = 1, \ldots, n$, we have $(f(x_1, \ldots, x_n), f(y_1, \ldots, y_n)) \in \varrho_1$. As $(x_i, y_i) \in \varrho_2$ for $i = 1, \ldots, n$, we have $(f(x_1, \ldots, x_n), f(y_1, \ldots, y_n)) \in \varrho_2$. Thus $(f(x_1, \ldots, x_n), f(y_1, \ldots, y_n)) \in \varrho_1 \cap \varrho_2$ and $\varrho_1 \cap \varrho_2$ is a relation compatible with \mathfrak{A} . The assertion for ϱ^* is evident.

Theorem 2. Let $\mathfrak{A} = \langle A, \mathscr{F} \rangle$ be an algebra, let ϱ be a reflexive relation on A compatible with \mathfrak{A} . Then $\varrho \cap \varrho^*$ is a tolerance compatible with \mathfrak{A} .

Proof. The reflexivity and the symmetry of $\varrho \cap \varrho^*$ is evident. Its compatibility with $\mathfrak A$ follows from Theorem 1.

Theorem 3. Let $\mathfrak{A} = \langle A, \mathscr{F} \rangle$ be an algebra, let ϱ be a reflexive and transitive relation (i.e. a quasi-ordering) on A compatible with \mathfrak{A} . Then $\varrho \cap \varrho^*$ is a congruence on \mathfrak{A} .

Proof is analogous to that of Theorem 2.

Let the product $\varrho_1\varrho_2$ of two binary relations ϱ_1 , ϱ_2 on the same set A be defined so that $(x, y) \in \varrho_1\varrho_2$ for $x \in A$, $y \in A$, if and only if there exists $z \in A$ such that $(x, z) \in \varrho_1$, $(z, y) \in \varrho_2$. We can define also the n-th power of a binary relation ϱ so that $\varrho^n = \varrho$ for n = 1 and $\varrho^n = \varrho\varrho^{n-1}$ for $n \ge 2$.

It is easy to prove the following

Theorem 4. Let $\mathfrak{A} = \langle A, \mathscr{F} \rangle$ be an algebra, let ϱ_1, ϱ_2 be two relations on A compatible with \mathfrak{A} . Then their product $\varrho_1\varrho_2$ is compatible with \mathfrak{A} .

Now we shall prove

Theorem 5. Let $\mathfrak{A} = \langle A, \mathscr{F} \rangle$ be an algebra, let $\{\varrho_j\}_{j=1}^{\infty}$ be a sequence of compatible relations on \mathfrak{A} such that $\varrho_j \subseteq \varrho_{j+1}$ for every positive integer j. Then $\bigcup_{j=1}^{\infty} \varrho_j = \varrho$ is compatible relation on \mathfrak{A} .

Proof. Let $f \in F$ be an *n*-ary operation, let $x_1, \ldots, x_n, y_1, \ldots, y_n$ be elements of A such that $(x_i, y_i) \in \varrho$ for each $i = 1, \ldots, n$. Then for each $i = 1, \ldots, n$ we have $(x_i, y_i) \in \varrho_{j(i)}$ for a positive integer j(i). Let $j = \max_{1 \le i \le n} j(i)$. Then $(x_i, y_i) \in \varrho_j$ for each $i = 1, \ldots, n$ and thus $(f(x_1, \ldots, x_n), f(y_1, \ldots, y_n)) \in \varrho_j \subseteq \varrho$.

Theorem 6. Let $\mathfrak{A} = \langle A, \mathscr{F} \rangle$ be an algebra, let ϱ be a reflexive relation on A compatible with \mathfrak{A} . Then the transitive hull ϱ_T of ϱ is compatible with \mathfrak{A} .

Proof. We have $\varrho_T = \bigcup_{j=1}^{\infty} \varrho^j$. According to Theorem 4 the relation ϱ^j is compatible with A for every positive integer j. As ϱ is reflexive, we have $\varrho^j \subseteq \varrho^{j+1}$ for every positive integer j. Thus according to Theorem 5 the relation $\varrho_T = \bigcup_{i=1}^{\infty} \varrho^j$ is compatible with \mathfrak{A} .

Example 1. This example will show us that:

- 1) the reflexive hull and the symmetric hull of a relation compatible with $\mathfrak A$ need not be compatible with $\mathfrak A$;
 - 2) the union of two relations compatible with A need not be compatible with A.

Let \mathfrak{A} be the semigroup with elements a, b, c, d, e, f, g, h given by the following Cayley table:

	a	b	c	d	e	f	g	h
а	a e h h e h h h	e	h	h	е	h	h	h
b	e	b	f	h	e	f	h	h
c	h	f	c	g	h	f	g	h
d	h	h	g	d	h	h	\boldsymbol{g}	h
e	e	e	h	h	e	h	h	h
f	h	f	f	h	h	f	h	h
g	h	h	g	g	h	h	g	h
h	h	h	h	h	h	h	h	h

Let $\varrho = \{(a,c), (b,d), (e,g)\}$. This is a compatible relation on \mathfrak{A} . The reflexive hull ϱ_R of ϱ is not compatible with \mathfrak{A} ; we have $(a,c) \in \varrho_R$, $(c,c) \in \varrho_R$, ac = h, cc = c, but $(h,c) \notin \varrho_R$. This is also an example that the union of two compatible relations on \mathfrak{A} need not be a compatible relation on \mathfrak{A} , because the reflexive hull of ϱ is the union of ϱ and of the relation of equality on A which is evidently also compatible with \mathfrak{A} . Also the symmetric hull $\varrho \cup \varrho^* = \{(a,c), (c,a), (b,d), (d,b), (e,g), (g,e)\}$ is not compatible with \mathfrak{A} . We have $(a,c) \in \varrho \cup \varrho^*$, $(d,b) \in \varrho \cup \varrho^*$.

Example 2. This example will show that the reflexivity of ϱ in Theorem 6 is substantial.

Let $\mathfrak A$ be the semigroup with elements a, b, c, d, e, f given by the following Cayley table:

						_
	a	b	c	d	e	f
a	а	d	f	d	f	f
b	d f d f	b	e	d	e	f
\boldsymbol{c}	f	e	c	f	e	f
d	d	d	f	d	f	f
e	f	e	e	f	e	f
f	f	f	f	f	f	f

Let $\varrho = \{(a, b), (b, c), (d, e)\}$. This is a compatible relation on A, evidently not reflexive. The transitive hull of ϱ is $\varrho_T = \{(a, b), (b, c), (a, c), (d, e)\}$. We have $(a, b) \in \varrho_T$, $(a, c) \in \varrho_T$, aa = a, bc = e, but $(a, e) \notin \varrho_T$. Thus ϱ_T is not compatible with \mathfrak{A} .

Theorem 7. Let $\mathfrak{A} = \langle A, \mathscr{F} \rangle$ be an algebra, let ϱ be a relation on A compatible with \mathfrak{A} . Let e be an idempotent element of \mathfrak{A} (i.e. such an element that f(e, e, ..., e) =

= e for each $f \in \mathcal{F}$). The set A_e of all elements $x \in A$ such that $(e, x) \in \varrho$ forms a subalgebra of \mathfrak{A} .

Proof. For $i=1,\ldots,n$ let $x_i \in A_e$, this means $(e,x_i) \in \varrho$. If $f \in F$ is an *n*-ary operation, then $(e,f(x_1,\ldots,x_n))=(f(e,\ldots,e),f(x_1,\ldots,x_n))\in \varrho$, because ϱ is compatible with $\mathfrak A$. This means $f(x_1,\ldots,x_n)\in A_e$. As the elements x_1,\ldots,x_n and the operation f were chosen arbitrarily, A_e forms a subalgebra of $\mathfrak A$.

Corollary 1. Let L be a lattice (or semilattice), let ϱ be a compatible relation on L. Then for each $x \in L$ the set L_x of all elements $y \in L$ such that $(x, y) \in \varrho$ forms a sublattice (or subsemilattice respectively) of L.

Remark. Theorem 7 implies immediately Theorem 11 from [3].

Theorem 8. Let G be a group, let ϱ be a compatible relation on G. Let ϱ be reflexive. The set N of all $x \in G$ satisfying $(e, x) \in \varrho$ is a normal subgroup of G. (The symbol e denotes the unit of G.)

Proof. From Theorem 7 it follows that set N is a subgroup of G. Let $x \in N$, i.e. $(e, x) \in \varrho$. From the reflexivity of ϱ we obtain $(z, z) \in \varrho$ and $(z^{-1}, z^{-1}) \in \varrho$ for arbitrary $z \in G$. From the compatibility of ϱ we obtain finally $(e, z^{-1}xz) = (z^{-1}ez, z^{-1}xz) \in \varrho$, thus $z^{-1}xz \in N$. Therefore N is a normal subgroup of G.

Remark. In [4] it is proved that each compatible relation on a group which is reflexive and symmetric is also transitive, i.e., it is a congruence.

Theorem 9. Let G be an involutory group (i.e. $x^2 = e$ for each $x \in G$, where e is the unit of G), let ϱ be a reflexive compatible relation on G. Then ϱ is a congruence relation on G.

Proof. Let $(x, y) \in \varrho$ for $x \in G$, $y \in G$. From the reflexivity of ϱ we have $(x^{-1}, x^{-1}) \in \varrho$, $(y^{-1}, y^{-1}) \in \varrho$ and from the compatibility of ϱ we have $(e, x^{-1}y) = (ex^{-1}x, x^{-1}y) \in \varrho$ and thus $(y^{-1}, x^{-1}) = (ey^{-1}, x^{-1}yy^{-1}) \in \varrho$. But G is an involutory group; this means $y^{-1} = y$, $x^{-1} = x$, thus $(x, y) \in \varrho$ implies $(y, x) \in \varrho$. By the theorem in [4] quoted in the above remark ϱ is a congruence on G.

Theorem 10. Let $L(\vee)$ be a complete \vee -semilattice, let ϱ be a compatible relation on $L(\vee)$. Denote $M(x) = \bigvee_{(x,y) \leq \varrho} y$ for $x \in L(\vee)$. The mapping M which assigns the element M(x) to any $x \in L(\vee)$ is an isotone mapping of $L(\vee)$ into itself.

Proof. Let $x \in L(\vee)$, let ϱ be a compatible relation on $L(\vee)$. The existence of M(x) for each $x \in L(\vee)$ follows from the completeness of $L(\vee)$. Let $x \leq y$, i.e. $x \vee y = y$. From the definition of M(x) we have $(x, M(x)) \in \varrho$, $(y, M(y)) \in \varrho$ (because $L(\vee)$ is complete) and from the compatibility of ϱ we obtain $(x \vee y, y) \in Q$

 $M(x) \vee M(y) \in \varrho$ therefore $M(x) \vee M(y)$ is one factor in the join $\bigvee_{(x \vee y, z) \in \varrho} z =$ = $M(x \vee y)$. This means $M(x) \vee M(y) \leq M(x \vee y)$. But $x \vee y = y$ and thus $M(x) \vee M(y) \leq M(y)$, which means $M(x) \leq M(y)$.

Corollary 2. Let $L(\land)$ be a complete \land -semilattice, let ϱ be a compatible relation on $L(\land)$. Denote $m(x) = \bigwedge_{(x,y)\in\varrho} y$ for $x \in L(\land)$. The mapping m which assigns the element m(x) to any $x \in L(\land)$ is an isotone mapping of $L(\land)$ into itself.

Proof of Corollary 2 is dual to that of Theorem 10.

Corollary 3. Let L be a complete lattice, let ϱ be a compatible relation on L. Let M(x) and m(x) be defined as in Theorem 11 and Corollary 2. The mappings $M: x \to M(x)$, $m: x \to m(x)$ are isotone mappings of L into itself.

Theorem 11. Let S be a semigroup, let ϱ be a compatible relation on S, let T be a subsemigroup of S. The set ϱT of all elements $x \in S$ such that $(x, x') \in \varrho$ for some $x' \in T$ is a subsemigroup of S.

Proof. Let $x \in \varrho T$, $y \in \varrho T$. Then there exist elements $x' \in T$, $y' \in T$ such that $(x, x') \in \varrho$, $(y, y') \in \varrho$. From the compatibility of ϱ we have $(xy, x'y') \in \varrho$. But $x'y' \in T$, because T is a subsemigroup of S, thus $xy \in \varrho T$ and ϱT is a subsemigroup of S.

Theorem 12. Let S be a semigroup, let ϱ be a compatible relation on S. Let ϱ be reflexive. Let T be an ideal of S (right or left or two-sided). The set ϱ T defined in Theorem 11 is an ideal of the semigroup S (right or left or two-sided, respectively).

Proof. Let $x \in \varrho T$, let T be a left ideal of S. There exists $x' \in T$ such that $(x, x') \in \varrho$. Let $y \in S$; from the reflexivity of ϱ we have $(y, y) \in \varrho$. From $(x, x') \in \varrho$ and $(y, y) \in \varrho$ we obtain $(xy, x'y) \in \varrho$. But $x'y \in T$, because T is a left ideal of S. Therefore $xy \in \varrho T$ and ϱT is a left ideal of S. Analogously for right and two-sided ideals.

Theorem 13. Let R be a ring, let ϱ be a compatible relation on R, let O be the zero element of R. Let ϱ be reflexive. The set R_0 of all $x \in R$ such that $(0, x) \in \varrho$ (or $(x, 0) \in \varrho$) is an ideal of R.

Proof follows immediately from Theorems 12, 8 and 1.

For a ring whose additive group is involutory, the assumption that ϱ is reflexive is unnecessary. We obtain

Corollary 4. Let R be a ring whose additive group is involutory, let ϱ be a compatible relation on R. The set R_0 of all $x \in R$ for which $(0, x) \in \varrho$ (or $(x, 0) \in \varrho$) holds (where O is the zero element of R) is a subring of the ring R.