

Werk

Label: Article **Jahr:** 1975

PURL: https://resolver.sub.uni-goettingen.de/purl?31311157X_0100|log78

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

ON TREE-COMPLETE GRAPHS

LADISLAV NEBESKÝ, Praha (Received January 30, 1974)

If G_0 is a graph, then we denote by $V(G_0)$, $E(G_0)$, and $\Delta(G_0)$ the vertex set of G_0 , the edge set of G_0 , and the maximum degree of G_0 , respectively; the number of vertices of G_0 is called the order of G_0 . For the notions not defined here, see BEHZAD and CHARTRAND [2].

We shall say that a graph G of order p is tree-complete if for every tree T of order p there is a spanning subgraph T' of G such that the graphs T and T' are isomorphic. Obviously, every complete graph is tree-complete. In the present paper, we shall construct tree-complete graphs. First, we shall prove three lemmas.

Let F be a forest. A vertex u of F is said to be semi-terminal if either u is an end-vertex or there is an end-vertex v such that the vertices u and v lie in the same component and the maximum degree among the vertices lying on the u-v path in F is two.

Lemma 1. Let F be a forest. Then either $\Delta(F) \leq 2$ or F contains a vertex u of degree $d \geq 3$ such that u is adjacent to at least d-1 semi-terminal vertices.

Proof. Assume $\Delta(F) \geq 3$. Then there is a component T of F such that $\Delta(T) \geq 3$. This means that T contains a vertex u of degree $d \geq 3$ such that for every vertex $v \in V(T)$ of degree $d' \geq 3$, $e(u) \geq e(v)$, where is the eccentricity of the vertex w in the tree T. Clearly, u is adjacent to at least d-1 semi-terminal vertices of F.

Lemma 2. Let T be a tree of order $p \ge 4$. Then there are distinct vertices $v_1, \ldots, v_{\lfloor p/4 \rfloor}$ such that

$$\Delta(T-v_1-\ldots-v_{\lceil p/4\rceil})\leq 2.$$

Proof. Let F be a forest. Assume that F contains a vertex v of degree $d \ge 3$ such that at least d-1 vertices adjacent to v are semi-terminal. If at least three semi-terminal vertices are adjacent to v, then v is referred to as an auxiliary vertex. If precisely two vertices adjacent to v are semi-terminal, then d=3 and the only

non-semi-terminal vertex adjacent to v is said to be auxiliary. If $\Delta(F) \leq 2$, then an arbitrary vertex is said to be auxiliary.

Let v_1 be an auxiliary vertex of T. For every integer i, $1 \le i < \lfloor p/4 \rfloor$, let v_{i+1} be an auxiliary vertex of the forest $T - v_1 - \ldots - v_i$. The inequality of the lemma follows.

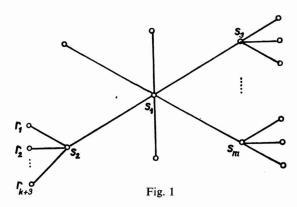
Lemma 3. Let $p \ge 8$, p be an integer. Then there is a tree T of order p such that (1) for every sequence of distinct vertices $u_1, ..., u_{\lfloor p/4 \rfloor - 1}, \Delta(T - u_1 - - u_{\lfloor p/4 \rfloor - 1}) \ge 3$.

Proof. Let p = 4m + k, where $k \in \{0, 1, 2, 3\}$. We denote by T the tree in Fig. 1 (if $m \ge 3$, then each of the vertices s_3, \ldots, s_m has degree 4). It is easy to prove that T fulfils (1). Hence the lemma follows.

Let G be a graph. We denote by $\mathcal{H}_p(G)$ the graph with the vertex set $V(G) \cup V(G')$ and with the edge set

$$E(G) \cup E(G') \cup \{uv \mid u \in V(G), v \in V(G')\},$$

where G' is the path of order p, and $V(G) \cap V(G') = \emptyset$.



Theorem 1. Let p be an integer, $p \ge 4$, and let G be a tree-complete graph of order n. Then the graph $\mathcal{H}_p(G)$ is tree-complete if and only if $n \ge \lfloor (p-1)/3 \rfloor$.

Proof. It is routine to prove that $n \ge \lfloor (p-1)/3 \rfloor$ if and only if $n \ge \lfloor (p+n)/4 \rfloor$.

Let $n \ge [(p+n)/4]$, and let G' be the same as in the definition of $\mathcal{H}_p(G)$. Consider a tree T of order p+n. Then there are distinct vertices v_1, \ldots, v_n of T such that the forest $T-v_1-\ldots-v_n$ is isomorphic to a spanning subgraph of G'. The subgraph of T induced by $\{v_1, \ldots, v_n\}$ is isomorphic to a spanning subgraph of G. Hence T is isomorphic to a spanning subgraph of $\mathcal{H}_p(G)$.

Let n < [(p+n)/4]. Then $p+n \ge 8$. If the tree T in Fig. 1 has order p+n, then Lemma 3 implies that T is isomorphic to no spanning subgraph of $\mathcal{H}_p(G)$. Hence the theorem follows.

Obviously, every tree-complete graph is connected. Since a tree-complete graph contains both a spanning path and a spanning star, we get the following

Proposition. Every tree-complete graph has at most two blocks.

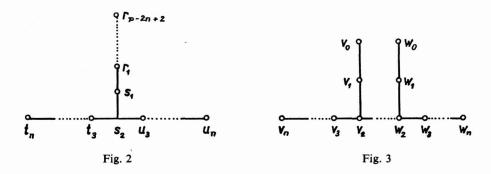
In the remainder of the paper we shall discuss tree-complete graphs with a cutvertex.

Theorem 2. Let G be a tree-complete graph of order p, and let B be a block of G having order n, where $n \le (p+1)/2$. If $p \ne 8$, 11, then $n \le 3$. If p = 8, then $n \le 4$. If p = 11, then $n \le 5$ and $n \ne 4$.

Proof. Let $n \ge 4$. Obviously, $p \ge 2n - 1 \ge 7$. If $2n - 1 \le p \le 2n + 1$, then we denote by $T_{p,n}$ the tree in Fig. 2 $(r_{p-2n+2}, t_n, and u_n are all the end-vertices)$. If $p \ge 2n + 2$, then we denote by $T_{p,n}$ the tree in Fig. 3 $(v_0, w_0, v_n, and w_n are all the end-vertices)$. It is not difficult to see that $T_{p,n}$ is isomorphic to no spanning subgraph of G, except the following cases: p = 8 and n = 4; p = 9 and n = 4; p = 11 and n = 5. If p = 9 and n = 4, then the subdivision graph of the star K(1, 4) is isomorphic to no spanning subgraph of G. Hence the theorem follows.

Note that there is a tree-complete graph of order 8 which contains a block of order 4, and that there is a tree-complete graph or order 11 which contains a block of order 5.

Let G be a graph. We denote by $\mathscr{Y}_1(G)$ the graph G_1 with $V(G_1) = V(G) \cup \{u, v\}$ and with $E(G_1) = \{tu \mid t \in V(G)\} \cup \{uv\}$, where u and v are distinct vertices not belonging to G. We denote by $\mathscr{Y}_2(G)$ the graph G_2 with $V(G_2) = V(G_1) \cup \{w\}$ and with $E(G_2) = E(G_1) \cup \{uw, vw\}$, where $w \notin V(G_1)$.



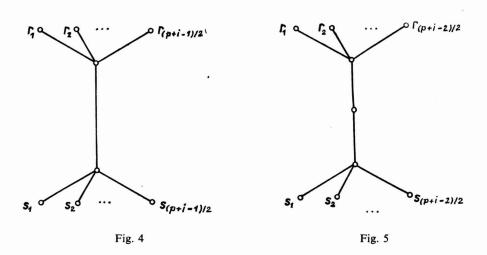
Theorem 3. Let $i \in \{1, 2\}$, and let G be a graph of order p such that every tree T_0 of order p with $\Delta(T_0) \leq \lfloor (p+i)/2 \rfloor$ is isomorphic to a spanning subgraph of G. Then $\mathscr{Y}_i(G)$ is tree-complete.

Proof. Let T be a tree of order p + i + 1. A vertex of T adjacent to an end-vertex will be referred to as an e_1 -vertex. A vertex of T adjacent either to at least two end-vertices or to an e_1 -vertex of degree 2 will be referred to as an e_2 -vertex. We denote by d_i the maximum degree among the e_i -vertices.

Let i=1. The case $p \le 2$ is obvious. Assume that $p \ge 3$. Consider an e_1 -vertex r_1 of degree d_1 and an end-vertex s_1 adjacent to r_1 . We have $\Delta(T-r_1-s_1) \le$ $\le [(p+1)/2]$. As $T-r_1-s_1$ is a forest, it is a spanning subgraph of a tree T_1 with $\Delta(T_1) = \max(2, \Delta(T-r_1-s_1)) \le [(p+1)/2]$. As T_1 is isomorphic to a spanning subgraph of G, $T-r_1-s_1$ is also isomorphic to a spanning subgraph of \mathcal{G} . Hence T is isomorphic to a spanning subgraph of \mathcal{G} .

Let i=2. Consider an e_2 -vertex r_2 of degree d_2 , and distinct vertices s_2 and t_2 such that s_2 is adjacent to r_2 , t_2 is an end-vertex, and either (a) s_2 is an end-vertex and t_2 is adjacent to r_2 or (b) s_2 is an e_1 -vertex of degree 2 and t_2 is adjacent to s_2 . We have $\Delta(T-r_2-s_2-t_2) \leq [(p+2)/2]$. Clearly, $T-r_2-s_2-t_2$ is a spanning subgraph of a tree T_2 with $\Delta(T_2) \leq [(p+2)/2]$. This means that $T-r_2-s_2-t_2$ is isomorphic to a spanning subgraph of \mathscr{G} . Hence T is isomorphic to a spanning subgraph of $\mathscr{G}_2(G)$ and the proof is complete.

Note that - in a certain sense - the value [(p+i)/2] in Theorem 3 is the best possible. This follows from Fig. 4 (for even p+i+1) and from Fig. 5 (for odd p+i+1).



Corollary 1. Let G be a tree-complete graph. Then both $\mathcal{Y}_1(G)$ and $\mathcal{Y}_2(G)$ are tree-complete.

We denote by D_1 and D_2 the trivial graph and the connected graph with exactly one edge. If p is a positive integer, then we denote by D_{p+2} the graph $\mathcal{Y}_1(D_p)$. As has been shown by Behzad and Chartrand [1], the graph D_p , $p \ge 2$, is (up to iso-