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1. Definitions, basic theorems. In the whole paper, meromorphic functions are
understood to be meromorphic in C.

Let f be a meromorphic function, n(r, f) let denote the number of poles of the
function f that lie in the disc |z| < r and n(r, a) let denote the number of roots of
the equation f(z) = a in the disc |z| < r, each point counted with regard to its
multiplicity. Usually it has been put n(r, f) = n(r, ).

Let us set

N(r.f) = Jv n(t,f) = n(0.f) _t n(0.f) dt + n(0,f)Inr,

0

N(r, a) = JVM:LO’G)M + n(0,a)Inr,

0
1 (* .
m(r,f) = 51:_[ In* |f(re®)| do,
0

m(r, a) = 1 2nln‘L . de
’ 2n ), |f(rei“’) — a| '

The function T(r,f) = m(r,f) + N(r,f) is called Nevanlinna characteristic
function of f. Further, let us denote by 7(r, f) (i(r, a), a € C) the number of different
poles (different roots of the equation f(z) = a, respectively) that lie in the disc
lz| = r.

Analogously we define

N(r,f) = J.rﬁ(t—’f)—:t—ﬁ(&f—)dt + a(0,f)Inr,

0

N(r,a) = jv (t, a) — A(0, a)

dt + n(0,a)Inr.
0 t
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1.1 Theorem. (First Main Theorem of the value distribution theory.) For any
meromorphic function f, the equation '

m(r, a) + N(r, a) = T(r, f) + &(r, a)
holds for each a € C, where &(r, a) = O(1) for r - oo.

1.2 Theorem. (Second Main Theorem of the value distribution theory.) Let f be
a nonconstant meromorphic function. If a,, a,, ..., a,, q 2 1, are mutually distinct
finite or infinite complex numbers, then

q
Y m(r,a,) < 2T(r, f) — No(r) + S(r, f),
v=1
where Ny(r) = N(r, 1/f') + 2N(r, f) — N(r, ) and the remainder S(r, f) satisfies
the following conditions: S(r, f) = o{T(r, f)} with at most the exception of a set E
of values (r) of finite Lebesgue measure. If f is of finite order, then S(r,f) =
= o{T(r, )} without exceptional intervals.

1.3 Definition. Let f be a meromorphic function, a € C U {oo}. Let us set

im m(r, a) 1 HEN(r’ a)’
l:l) T(r,f) r-o T(r,f)

| Nea)
r-+o T(r,f)

9a) = 5o, 1) = lim D) = N6}
r-o T(r, f)

Recall that ©(a) = 6(a) + (a). The quantity &(a) is called the deficiency of the
value a, 9(a) is called the ramification index of the point a. The value a is called
deficient value (or Nevanlinna exceptional value) if 6(a) > 0.

If the equation f(z) = a, a € C, has only a finite number of roots, then the value a
is called Picard exceptional value. The function f must be transcendental. It is clear
that every Picard exceptional value is Nevanlinna exceptional value, but the
contrary is not true.

In the following we shal need the following theorems (S(r, f) has the same meaning
as in Theorem 1.2):

5(a) = (a. /)

6(a) = 6(a, /)

1.4 Theorem. (Milloux, see [5] or [2].) Let f be a meromorphic function, ke N
arbitrary. Then

(1) T(r, f®) < (k + 1) T(r, f) + S(r. f) .
1.5 Theorem. (See [5].) Let f be a entire function, k € N arbitrary. Then
)] T(r, f®) < T(r, f) + S(r, f) .
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1.6 Theorem. (See [8] or [4].) Let f be a meromorphic function for which
S(r,f) = o{T(r,f)}. Then

(3)

for arbitrary n e N.

—— T (a.) SH0.1)

1.7 Note. The relation S(r, f) = o{T(r, f)} is valid for every function of finite
order, but it need not be fulfilled for functions of infinite order.

1.8 Theorem. (Hayman, see [2].) Let f be a transcendental meromorphic function,
k € N arbitrary. Then

(@) T(r,f)§(2+}I;)N(r,}>+(2+£)ﬁ( f(k)l )+S(rf)

Corollary. Either the function f assumes every finite value infinitely many times,
or f® (k e N) assumes every nonzero finite value infinitely many times.

1.9 Theorem. (Milloux, see [3], p. 132.) Let f be a transcendental meromorphic
function, ke N, ae C, b & 0. Then

1) T(r,f) = N(r.f) +
(k)
+N<r’f—1 a> = N(r’f(—")IT;) - N(r ff(k+1) )+ S(r f)

1.10 Theorem. (See [1], [2].) Let f be a meromorphic function. Then the quantity
O(a) vanishes for all except at most a countable set of values a. Furthermore,

(6) za:{é(a) + 3(a)} = ;Q(a) <2.

1.11 Note. In the proof of Theorem 2.2 we shall need the following inequality
which was obtained when proving Theorem 1.2 (see [1], [4], [8]):

q
(n N (r’ %) + Y m(r,a,) + S(r.f) < T(r,f') < N(r. f') + m(r, f) + S(r.f) .
v=1
Here ay, a,, ..., a, are arbitrary finite complex numbers.

2. Some generalizations of Polya-Saxer theorem. The following theorem was
proved by Polya and Saxer (1923).

2.1 Theorem. (See [6].) If an entire transcendental function has finite Picard
exceptional value, then every its derivative assumes all finite nonzero values

infinitely many times.
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The Nevanlinna theory is a tool for finer investigation in this direction, and with
its help it is possible to prove theorems that generalize, in different ways, the Polya-
Saxer theorem.

The following generalization of the Polya-Saxer theorem is a consequence of the
inequality (3).”

2.2 Theorem. Let f be a meromorphic function for which S(r,f) = o{T(r, f)}
and &(oo, f) = 1. If the function f has finite Nevanlinna exceptional value a (that
means 5(a) > 0), then every derivative of f assumes all finite nonzero values
infinitely many times.

Proof. First we shall prove (under our suppositions) that the relation §(co, f) = 1
implies the relation é(co0, f*) = 1, for arbitrary k € N. From the evident relation

N(r,f") _ N(r.f) + N(r,f). T(r, f)
T(r. f') T(r, f) T(r.f')

we get

— 6(o0 ’=1mM s — B\, )
(®) 1-d(f) E:T(r,f,)é[l (e, 1) + 1 = 6(c0, )] i (g

The inequality (7) yields a lower estimate for lim T(r, f')/T(r, f) (and thereby also

r—oo

an upper estimate for im T(r, f)/T(r, f')). From the inequality (7) we obtain easily
r—o

1 q
N(r,—)+ r,a,
r— o T(r f) r—+o T(r,f)

+

E‘:

N(r L+
,;w T(r,f) ~ reo »S( jf")> + Zé(av,f)

According to the suppositions of our theorem it is §(a) > 0. If we choose a, = a
for any v, then lim T(r, /')/T(r, f) = &(a) > 0. Hence also

r— o

[im 1(r.f) = 1 < +o0
roo T(r,f’) Temn T(r,f’)
o T(r, f)

If 8(c0, f) = 1, then &(co, f) = 1, and from the inequality (8) we get &(c0, f*) = 1.
The validity of the relation (o, f®) = 1, for arbitrary k € N is obtained by simple
induction.
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The relation (6) from. Theorem 1.10 applied to f® gives, with respect to
(o0, fW) =1,
S a6 S + 60, fV) £ 1.
b*0,00

From (3) we get
S o0 s) $1 - T o).

b+0,0 k + 1a¥w

According to the suppositions, there exist a e C that d(a,f) > 0. Then
Y. (b, f¥) < 1. Thus (b, f*) < 1 for every finite nonzero complex value b.

b*0,0
This implies that the function f assumes the value b infinitely many times, for the
function f is transcendental. .

The corollary of Theorem 1.8 yields a further generalization of the Polya-Saxer
theorem.

2.3 Theorem. Let f be a transcendental meromorphic function. If the function f
has finite Picard exceptional value, then every derivative of f assumes all finite
nonzero values infinitely many times.

3. In this section some further generalizations of the Polya-Saxer theorem will
be proved.

3.1 Theorem. Let f be a transcendental meromorphic function for which N(r, f) =
= o{T(r,f)} (that means ©(o0, f) = 1). If the function f has finite Nevanlinna
exceptional value, then every dérivative of f assumes all finite nonzero value
infinitely many times.

3.2 Theorem. Let f be a transcendental meromorphic function for which S(r, f) =
= o{T(r,f)} and (o0, f) = 1. If 8(a, f) > 0, a € C, then for every finite nonzero
complex number b and arbitrary k € N, the inequality

() *) _é@,_f)
) 5b, f®) = 0(b,f®) =1 01

holds.

3.3 Theorem. Let f be an entire transcendental function for which S(r,f) =
= o{T(r,f)}. If 6(a, f) > 0, a € C, then for every finite nonzero complex number b
and arbitrary k € N, the inequality

(10) 8(b, f®) < 0(b, f®) = 1 — (a, f)
holds.
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Proof of Theorem 3.1. We use the inequality (5), choosing the notation so
that §(a, f) > 0. Let us suppose that the equation f*)(z) = b has only a finite
number of roots.

Then

— 1

N(r, m) = o{T(r, f)} -

Let us divide the inequality (5) by T(r, /). We obtain the inequality

N mfr 1) N( {28
(1) 1= 1:((:;)) + N<T(rf’f—) a> + N( T{r""f)— b) _ N( T(:’,‘;” ) ¥ S’T((’r’;))

In (11) we let r — oo, r ¢ E, where the set E has finite Lebesgue measure. The set E
is “the exceptional set” from the Nevanlinna Second Main Theorem. Recall that
S(r, f) = of{T(r, f)} for r - o0, r ¢ E.

Since
&a,f) >0,
it is
N(”fl )
12 -t =% _ 421,
( ) r— o T(r,f)

According to our notation 6(a, f) = 1 — A. From (11), (12) we obtain the inequality

N(r,——1 ) N(r,—1 )
1 < im f=9) mm f—a

1m =A

T(rf) " ree  T(rS)

This contradicts the inequality A < 1. Therefore the supposition that there is
only a finite number of roots of the equation f*)(z) = b is not correct, hence the
function f* assumes the value b infinitely many times, QED.

Proof of Theorem 3.2. Again we use the inequality (5). Now we consider func-
tions for which S(r, f) = o{T(r, f)}! From (11) we obtain the inequality

e AT —
(13) 'Ilm ) =21-4.
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The definition of the deficiency and the inequality (1) imply the following inequalities:

N (r, e = b) N (r, f—-—(k)l_ b)
1—A<Tm 7" =% _(k+1)im <
r—w T(r,f)

o (k + 1) T(r, f) + S(r, )

f(k)_ b
=< (k + I)Ew»

N (r, f_—(") 1_ b)
(k+1)—(k+I)FW§A+/€=1—5(0J)+’<,
_<r, 1 )
Rt =

The last inequality may be rewritten in the form

3(b, f®) < O(b, fP) < 1 — i(f:_f) QED .

Proof of Theorem 3.3. The proof of the inequality (10) is analogous to that of
the inequality (9), we only use the stricter inequality (2) instead of (1).
From the inequalities (13) and (2) we get

1

Y (r’ 7o b) Y < ® 1—_b> ) (r’ - b)
-2yt — ¥ R4 "V g5
roo T(r, f) r-o T(r, f) + S(r, f) roo T(r’ f(k))
Then

o(b,f®) £ 4 =1-a,f),

which together with the well-known inequality 6(a) < ©(a) yields (10), QED.

4. Remarks.

4.1. The supposition in Theorem 3.1 about the existence of finite Nevanlinna
exceptional value is essential. It will be seen in the following

Assertion. Let f(z) = e + z. Then (a,f) = 0 is valid for every aeC, that
means, f has not finite Nevanlinna exceptional value.
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The function f is entire, hence the second supposition of Theorem 3.1 is evidently
fulfilled. Its derivative f'(z) = ¢* + 1 never assumes the nonzero value 1.

Proof of the assertion. We use the theorem which supplies in the terms of
covering sufficient conditions for the validity of 6(a, f) = 0. First let us recall some
concepts. Let W = f(z) be an entire function. Let us denote by & the Riemann sur-
face of the analytic function f~'. Its ramification points lie just over the points
wi€ C, w, = f(z,), for which f’(z,) = 0. Further let us denote by m the natural
projection & on C (n(3) = w, where 3 is the algebraic element of the analytic
function f~', with the centre at w).

Now, the following theorem (see [3], p. 431) is valid:

Theorem. Let w = f(z) be an entire function, # the Riemann surface of f~*,
a € C arbitrary. Let A > 0 and an n-neighbourhood U(a, n) exist with the following
properties: If #, < & is an arbitrary domain over U(a, n) (n(#,) = U(a, 1)),
then over every point w e U(a, n) there lie just A, points and 1 £ A, < A (every
ramification point of the order m is counted (m — 1)-times). Then é(a, f) = 0.

Now let us construct the Rieman surface &% of the analytic function f7*,
where f(z) =€ +z. It is f(z) = ¢ +1 =0 for z, = 2k + 1)mi, k =0, £1,
+2,.... The ramification points lie over w, = €™ + z, = —1 + (2k + 1) 7i.
These ramification points are of the first order, for f”(z) = ¢* + 0. The function
¢ + z maps conformally the strip (see [7], p. 481, example 7)

Q. ={zeC 2k —1)n <Imz < (2k + 1) 7}

(k) (k)

onto C~(p” U pt), where

PP ={zeC, z =x + (2k + 1) mi, xe(— o0, — 1)},
PP ={zeC, z=x+ (2k — 1) ni, xe(—o0, —1)}.

Let & be constructed so that the k-st sheet £, of the plane C, which is cut along
the rays p{® a p, is connected in the usual way with the (k + 1)-st sheet 2, ,,
along pY and with the (k — 1)-st sheet #,_; along p{, k =0, +1, +£2,.... We
obtain infinitely-many-sheeted surface. All domains lying over an arbitrary disc D
with the centre at a point w + w,, which contains none of the points w,, are discs.
All domains over an arbitrary disc D, with the centre at w, are discs except a single
one which is a two-sheeted disc. In this domain, exactly two points lie over each
point w € D,. We can choose 4 = 2 or A = 1, hence the function w = €* + z has
no Nevanlinna exceptional value.

4.2. Let us compare the suppositions of Theorems 2.2 and 3.1.

a. Theorem 2.2 applies only to functions with S(r,f) = o{T(r,f)}, while in
Theorem 3.1 this condition does not appear.
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