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A GENERALIZATION OF THE TORSION FORM
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The well-known torsion form of a linear connection on an n-dimensional mani-
fold M is the exterior covariant derivative of the canonical R"-valued form ¢ of the
bundle of linear frames. As a natural generalization of ¢, we have introduced the
canonical (R" @ g)-valued form 6 of the first prolongation W'(P) of an arbitrary
principal fibre bundle P(B, G), n = dim B, [5]. In a similar way, we define the
torsion form of a connection on W!(P) to be the exterior covariant derivative of 6.
This concept generalizes also the torsion form of a linear connection of higher order
in the sense of YUEN, [11]. Using a result by Svec, we find the structure equations
of 6. We also deduce that the connections on W'(P) are in a one-to-one correspon-
dence with certain reductions of the second semi-holonomic prolongation WZ(P)
of P, and a connection on W'(P) is without torsion if and only if the corresponding
reduction is holonomic. In the special case of a linear connection, these results were
established by KoBAvasHi, [3], and LiBERMANN, [8]. In conclusion, we treat the
prolongation p(I', A) of a connection I" on P with respect to a linear connection A
on the base manifold, [7], and we find a necessary and sufficient geometric condition
_for p(I', A) to be without torsion. — Standard terminology and notation of the theory
of jets are used throughout the paper, see, e.g., [10]. Our investigations are carried .
out in the category C.

1. Let G and H be two Lie groups. Assume that every g € G determines an auto-
morphism § : H - H such that the mapping g + § is a right action of G on H.
Consider the corresponding semi-direct product G x H, i.e., the multiplication in
G x H is given by

(1) (91, hl) (gz’ hz) = (9192, gz(hx) hz) s 91,92 € G, hy,h,eH.

We have natural injections G > G X H, g » (g, eg) and H - G x H, h v (eg, h).
In this sense, Lie algebras g and ) of G and H form two complementary subspaces
of the Lie algebra of G x H. One verifies directly that

) ad (g, ex) (¢ ) = (e6, §7'(h)) -
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Consider further a principal fibre bundle P(B, G, n). Introduce a projection
P x H— B, (u,h) » n(u), ue P, he H, and define a right action of G x H on
P x H by

3 (u, h1) (9, h2) = (ug, §(hy) h2).

Lemma 1. P x H with action (3) is a principal fibre bundle (P x H) (B, G x H).

Proof is straightforward.
Obviously, P ~ P x {ey }is a reduction of P x H to the subgroup G = G x H.
In view of (2), we can apply the result by Svec, [9], p. 572. This proves

Lemma 2. Let o = 0w @ w, be a (g @ h)-valued connection form on P x H
and @, or @, the restriction of w; or w, to P, respectively. Then @, is a connection
form and @, is an h-valued tensorial form of type ad G. Conversely, if @ is a con-
nection form on P and ¢ is an h-valued tensorial form of type ad G on P, then there
is a unique connection form on P x H such that its restriction to P is @ @ ¢.

In particular, let ¢ be a representation of G on a finite dimensional vector space V.
For Aeg, A = jo7(t) and Be V, we set

@ A B = 1im * [o((0) (B) - B].

This defines a bilinear map g x V — V, (4, B) » A . B. Since V is an Abelian group
and g & g(g~")is a right action of G on ¥, we can construct the semi-direct product
G x V. Let @ be a connection form on P and ¢ a V-valued tensorial 1-form of
type ¢ on P. We have the situation of Lemma 2 and one verifies easily that formula
(2.23) of [9] is equivalent to the following

Proposition 1. I¢ is
(5) dop = —w.¢ + Do,

where Do is the covariant exterior derivative of ¢ with respect to w and @ . ¢ means
the 2-form on P defined by the extension of bilinear map (4).

2. Consider now the first prolongation W'(P) of a principal fibre bundle P(B, G),
[5]. We recall that W'(P) = H'(B) @ J'P is a principal fibre bundle over B with
structure group G, = L} x T»(G) (= the semi-direct product with respect to the
action S » SYof L, on Ty(G),Ye L}, S € T,(G)), n = dim B. There are two canonical
principal fibre bundle homomorphisms §: W!(P) - P and 1 : W!(P) » H'(B). In
[5], we have introduced the canonical (R" @ g)-valued form 6 of W'(P) and we have
deduced that 0 is a pseudotensorial form of type o, where the representation ¢ of G
on R" @ g is defined by formula (12) of [5]. If I' is a connection on W'(P), then the
covariant absolute derivative DO of 6 will be called the torsion of I
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Remark 1. If we consider the trivial one-element group G = {e} and the trivial
bundle B x {e}, then W'(B x {e}) = H'(B) and 0 coincides with the canonical
R"-valued form of H'(B). Hence we get really a generalization of the linear case.

Remark 2. Using the identification A'(B) ~ W'(H"~*(B)) of [5], we obtain the
inclusion H'(M) = W*(H*~'(M)). Further, the restriction of the canonical form
- of W'(H"~'(M)) to H'(M) is the canonical form of H'(M). In this interpretation,
our results generalize the investigation of the torsion form of a higher order linear
connection by Yuen, [11].

By (4), ¢ determines a bilinear map g, x (R*"@® g) > R" @ g, (4, B) » 4. B.
According to [5], we have a decomposition g, = g @ (R" ® R™) @ (g ® R™).
Hence we can write every Aeg, as A = A, + A, + A3, A;€g, 4, R" ® R™,
A;eg @ R™, and every BeR"® g as B = B, + By, B,eR", B; €g. The same
notation will be used for g)-valued and (R* @ g)-valued forms. Let {,):R" x
x (R"@R™) > R", {(,>¢:R" x (§ ® R™) > g be tensor contractions and [,]
the bracket of g. By direct evaluation, we obtain the formula for 4. B

(6) (4.B)o = (43, Bo) ,
(A . B)l = [Ala Bl] + <A3’ BO>G .

Proposition 2. (Structure equations of 0.) Let w be a connection form on W'(P).
Then we have

(7) dd = —w.0 + 'i‘[wl, 601] + DO,

where the g-valued fofm [@y, @] is considered an (R" @ g)-valued form with zero
component in R".

Proof is based on Proposition 1. However, 0 is not horizontal. That is why we
shall first consider the tensorial form 6 = 6h, i.e. f(X) = 6(hX), where hX means the
horizontal component of the vector X e T(W(P)). By Proposition 1,

(8) dfy, = —<w,, 6,y + DY, ,
dl, = —[w, §;] — {ws, o>¢ + DO, .

Further, let Y be a vertical vector on W'(P), which is the value of the fundamental
vector field determined by an element A4 € g,. By the definition of 6, [5], we have
6(Y) = A;. Hence 0 = § + w,;, where the g-valued form w, is considered an
(R" @ g)-valued form with zero component in R". Substituting it into (8), we obtain

©) dfo = <y, 0o} + Dbo ,
doy = ~[oy, 0,] = {3, 00>¢ + [0, @] + dw; — D, + DO .
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According to the structure equations of w, it is
(10) dwl = _%[CUI, wl] + D(DL .

Comparing (9) and (10), we deduce (7), QED.

3. We have remarked in [4] that a connection on a principal fibre bundle P(B, G)
can be defined as a G-invariant cross section P — J'P. Consider a connection I
on W'(P) in such a form, ie. I' : W!(P) » J' W'(P). We have J' W!(P) =
= J'(H'(B)® J'P) = J' H'(B) ® J2P. There is a standard identification x :
: J' H'(B) ~ H*(B) sending an element Z = jip € J* H'(B), ¢(x) = jo ¥(y) into
*Z) = jo[e(y(y)) 1, '] € H*(B), where t,:R" — R" is the translation z & z + y.
On the other hand, the second semi-holonomic prolongation W?(P) of P is equal
‘to H*(B) @ J*P, [5], so that the jet inclusion J2P < J?P induces the inclusion
W*(P) = J* W'(P). We define the reduction R(I') = W?(P) determined by a con-
nection I' : W'(P) - J' W'(P) to be the intersection

(11) R(I) = T(W'(P)) n W(P).

Consider the induced connection I'y = BT : P — J'P. We recall, [6], that
R(I'y) := H'(B) @ I'o(P) is a reduction of W'(P) to the subgroup L} x i,(G) = G,,
where i; : G — T,',(G) is the canonical injection g + jog, 4 being the constant map-
ping x & g, xe R".

Lemma 3. We have I'(u) € R(I') if and only if u € R(I'y) = W'(P).

Proof. Let I'(u) = j,p, where ¢ = (¢, ,) is a local cross section of
H'(B) @ J'P. The condition for jLp, to be semi-holonomic is ¢,(x) = j:(jJ9,) =
= ji(Bp) = Io(jlu), where j7:J'P — P is the jet projection. This is equivalent
to u € R(I'y), QED.

Consider further the canonical injections i, : G —» TX(G), g & j&g and i:L; —
— L?. The last mapping can be geometrically described as follows. If Ye L!, Y =
= jo ¥(y), then

(12) i(Y) = jo[tyn ¥ty ']

Our next assertion generalizes a result by LIBERMANN, [8].

Proposition 3. R(I') is a reduction of W(P) to the subgroup i(L}) x i,(G) =
< L2°% TX(G) = G2. Conversely, every reduction Q of W*(P) to i(L}) x i,(G)
determines a unique connection I'(Q) on W*(P) such that Q = R(I'(Q)).

Proof. Put I'(v, I'y(u)) = (Z, T)e J* H'(B) ® J?P, ue P, ve H'(B), and Z =
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= jlo, T = jlo. Starting from the fact that I' is G-invariant and using the formula
for the action of G, on W'(P), [5], we find

(13) “(vY, To(ug)) = jelo(y) Y. o(y) - (i1(9) Y ™' 07' ()],

Ye L}, g € G. On the other hand, the formula for the action of G2 on W(P) yields

(42), T) (i(Y), i2(9)) = («(2) i(Y), T- (i(g) (¥)™" «(2)™")) ,

see [S]. The relation %(Z) i(Y) = ji[¢(y) Y] is known from the linear case, [8].
Further, the injection i, : G - TZ(G) can be also expressed as g b jo[is(g) ¢, '].
Then we find easily i,(g) i(Y)™! «(Z)™* = ji(is(9) Y™ ¢~ *(»)). Comparing with
(13), we conclude that R(I') is a reduction to the subgroup i(L;) x i,(G). The converse
assertion can be proved quite similarly, QED.

We shall also need another geometric characterization of R(I'). We recall that
a semi-holonomic connection of the second order on P is a G-invariant cross section
P — J?P, [4]. For every (v,u)e H'(B) @ P, define u(T) (v, u) = po(I'(v, I'o(u))),
where p, : J* W!(P) » J?P is the product projection. According to Lemma 3, the
values of u(I') lie in J?P.

Lemma 4. For every Ye Ly, it is y(I') (v, u) = p(I') (vY, u).

Proof. Let I'(v, [y(u)) = jx(¢1(y), ¢2(y)). Since I' is invariant, we have I'(vY,

To(w) = ji(91(y) Y, 05(¥)), QED. |
Thus, we may consider u(I') to be a cross section P — J*P.

Proposition 4. u(I') : P — J*P is a semi-holonomic connection of the second order
on P.

Proof. We have to prove that yu(I') is G-invariant. But this is a simple consequence
of Proposition 3, QED.

Denote by A = A,I" the induced connection on H'(B) and by R(A) the cor-
responding reduction of H2(B). Our previous consideration implies

(14) R(T) = R(A) ® w(I') (P).
4. The following assertion generalizes a result by Kobayashi, [3].

Proposition 5. It is R(I') = W*(P) if and only if D8 = 0.

Proof. We first deduce a lemma. Since W*(P) = W'(W'(P)), every U € W*(P)
determines a mapping U~ : T(W'(P)) - R" @ g,, where u € W'(P) s the underlying
jet of U, [5]. Denote by g : W!(P) — B the bundle projection.

Lemma 5. Let M be a submanifold of W'(P) such that q| M is a submersion.
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Let  : M — W*(P) be a cross section and 0 the (R* @ g, )-valued form on M con-

structed by means of o, ie. 0|T(M)=o(u)™"|T(M), ue M. Then o(M)
< W*(P) if and only if

(15) di, = —<0,,0,>, dO; = —3[0;,0,] — <03, 05> .

Proof of Lemma 5. For M = W!(P), the assertion was deduced by direct
evaluation by DEKRET, [1]. Using the coordinates of [5] or [1], we have local co-
ordinates a}; on fibred manifold W*(P) -» W'(P), i,j,...=1,..,n,A=1,..,n +
+ dim G. The subspace W2(P) ¢ W*(P) is characterized by a}; = a},. Consider
(locally) a cross section o, : W'(P) » W?(P) extending o. Let o, be given by some
functions f};, so that ¢ is given by f}; = fi; | M. Denote by 8 the (R" @ g, )-valued
form on W'(P) constructed by means of o,. The evaluations by Dekrét imply (in
coordinates)

(16) do' = A0 + i A O,
do* = —1c5, 0P AO” + O° A OF + 500 NO*,

«=n+1,...,n + dim G. Restricting (16) to M, we find that (15) holds if and
only if f}; = f},, thus proving Lemma 5.

We are now in position to prove Proposition 5. Denote by & = @y @ @&, @ @,
or § =8, ® 0, the restriction of the connection form or the canonical form 6
to R(I'), respectively. By the definition of R(I') and by Lemma 3, it is @, = f, and
0, ®0, ® @, ® @, is the R ® g:)-valued form constructed by means of the cross
section I' | R(I'y). According to (7), we have

df, = —<&,, 0,> + DO, ,
df, = —%[61, 91] — (@3, Opy¢ + DO, .

Then Proposition 5 follows from Lemma 5, QED.

5. In particular, if I' is a connection on P and A is a linear connection on B, then
the prolongation p(I', A) of I' with respect to A is an interesting special connection
on W!(P), [7].

Proposition 6. Connection p(l", A) is without torsion if and only if I' is integrable
and A is without torsion.

Proof. As a direct consequence of the definition, we have u(p(l’, 4)) = I,
where I'" means the prolongation of I' in the sense of Ehresmann, [2]. According
to (14), it is R(p(I", A)) = R(A) @ I''(P). By a result by Kobayashi, [3] (or as a spe-
cial case of Proposition 5), R(4) = H?*(B) if and only if A is without torsion. On the
other hand, according to Ehresmann, [2], I'"(P) = J?P if and only if I' is integrable.
By Proposition 5 we prove our assertion, QED.
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