

Werk

Label: Article Jahr: 1975

PURL: https://resolver.sub.uni-goettingen.de/purl?31311157X_0100|log68

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

A GENERALIZATION OF THE TORSION FORM

Ivan Kolář, Brno (Received May 5, 1974)

The well-known torsion form of a linear connection on an n-dimensional manifold M is the exterior covariant derivative of the canonical \mathbf{R}^n -valued form φ of the bundle of linear frames. As a natural generalization of φ , we have introduced the canonical $(\mathbf{R}^n \oplus \mathfrak{g})$ -valued form θ of the first prolongation $W^1(P)$ of an arbitrary principal fibre bundle P(B, G), $n = \dim B$, [5]. In a similar way, we define the torsion form of a connection on $W^1(P)$ to be the exterior covariant derivative of θ . This concept generalizes also the torsion form of a linear connection of higher order in the sense of Yuen, [11]. Using a result by Švec, we find the structure equations of θ . We also deduce that the connections on $W^1(P)$ are in a one-to-one correspondence with certain reductions of the second semi-holonomic prolongation $\overline{W}^2(P)$ of P, and a connection on $W^1(P)$ is without torsion if and only if the corresponding reduction is holonomic. In the special case of a linear connection, these results were established by Kobayashi, [3], and Libermann, [8]. In conclusion, we treat the prolongation $p(\Gamma, \Lambda)$ of a connection Γ on P with respect to a linear connection Λ on the base manifold, [7], and we find a necessary and sufficient geometric condition for $p(\Gamma, \Lambda)$ to be without torsion. — Standard terminology and notation of the theory of jets are used throughout the paper, see, e.g., [10]. Our investigations are carried out in the category C^{∞} .

1. Let G and H be two Lie groups. Assume that every $g \in G$ determines an automorphism $\tilde{g}: H \to H$ such that the mapping $g \mapsto \tilde{g}$ is a right action of G on H. Consider the corresponding semi-direct product $G \times H$, i.e., the multiplication in $G \times H$ is given by

(1)
$$(g_1, h_1)(g_2, h_2) = (g_1g_2, \tilde{g}_2(h_1)h_2), g_1, g_2 \in G, h_1, h_2 \in H.$$

We have natural injections $G \to G \times H$, $g \mapsto (g, e_H)$ and $H \to G \times H$, $h \mapsto (e_G, h)$. In this sense, Lie algebras g and h of G and H form two complementary subspaces of the Lie algebra of $G \times H$. One verifies directly that

(2) ad
$$(g, e_H)(e_G, h) = (e_G, \tilde{g}^{-1}(h))$$
.

Consider further a principal fibre bundle $P(B, G, \pi)$. Introduce a projection $P \times H \to B$, $(u, h) \mapsto \pi(u)$, $u \in P$, $h \in H$, and define a right action of $G \times H$ on $P \times H$ by

(3)
$$(u, h_1)(g, h_2) = (ug, \tilde{g}(h_1) h_2).$$

Lemma 1. $P \times H$ with action (3) is a principal fibre bundle $(P \times H)(B, G \times H)$. Proof is straightforward.

Obviously, $P \approx P \times \{e_H\}$ is a reduction of $P \times H$ to the subgroup $G \subset G \times H$. In view of (2), we can apply the result by Svec, [9], p. 572. This proves

Lemma 2. Let $\omega = \omega_1 \oplus \omega_2$ be a $(\mathfrak{g} \oplus \mathfrak{h})$ -valued connection form on $P \times H$ and $\overline{\omega}_1$ or $\overline{\omega}_2$ the restriction of ω_1 or ω_2 to P, respectively. Then $\overline{\omega}_1$ is a connection form and $\overline{\omega}_2$ is an \mathfrak{h} -valued tensorial form of type ad G. Conversely, if $\overline{\omega}$ is a connection form on P and φ is an \mathfrak{h} -valued tensorial form of type ad G on P, then there is a unique connection form on $P \times H$ such that its restriction to P is $\overline{\omega} \oplus \varphi$.

In particular, let ϱ be a representation of G on a finite dimensional vector space V. For $A \in \mathfrak{g}$, $A = j_0^1 \gamma(t)$ and $B \in V$, we set

(4)
$$A \cdot B = \lim_{t \to 0} \frac{1}{t} \left[\varrho(\gamma(t)) \left(B \right) - B \right].$$

This defines a bilinear map $g \times V \to V$, $(A, B) \mapsto A$. B. Since V is an Abelian group and $g \mapsto \varrho(g^{-1})$ is a right action of G on V, we can construct the semi-direct product $G \times V$. Let ω be a connection form on P and φ a V-valued tensorial 1-form of type ϱ on P. We have the situation of Lemma 2 and one verifies easily that formula (2.23) of [9] is equivalent to the following

Proposition 1. It is

$$d\varphi = -\omega \cdot \varphi + D\varphi,$$

where $D\varphi$ is the covariant exterior derivative of φ with respect to ω and ω . φ means the 2-form on P defined by the extension of bilinear map (4).

2. Consider now the first prolongation $W^1(P)$ of a principal fibre bundle P(B, G), [5]. We recall that $W^1(P) = H^1(B) \oplus J^1P$ is a principal fibre bundle over B with structure group $G_n^1 = L_n^1 \times T_n^1(G)$ (= the semi-direct product with respect to the action $S \mapsto SY$ of L_n^1 on $T_n^1(G)$, $Y \in L_n^1$, $S \in T_n^1(G)$), $n = \dim B$. There are two canonical principal fibre bundle homomorphisms $\beta : W^1(P) \to P$ and $\lambda : W^1(P) \to H^1(B)$. In [5], we have introduced the canonical $(\mathbb{R}^n \oplus \mathfrak{g})$ -valued form θ of $W^1(P)$ and we have deduced that θ is a pseudotensorial form of type ϱ , where the representation ϱ of G_n^1 on $\mathbb{R}^n \oplus \mathfrak{g}$ is defined by formula (12) of [5]. If Γ is a connection on $W^1(P)$, then the covariant absolute derivative $D\theta$ of θ will be called the torsion of Γ .

Remark 1. If we consider the trivial one-element group $G = \{e\}$ and the trivial bundle $B \times \{e\}$, then $W^1(B \times \{e\}) = H^1(B)$ and θ coincides with the canonical \mathbb{R}^n -valued form of $H^1(B)$. Hence we get really a generalization of the linear case.

Remark 2. Using the identification $\widetilde{H}^r(B) \approx W^1(\widetilde{H}^{r-1}(B))$ of [5], we obtain the inclusion $\overline{H}^r(M) \subset W^1(\overline{H}^{r-1}(M))$. Further, the restriction of the canonical form of $W^1(\overline{H}^{r-1}(M))$ to $\overline{H}^r(M)$ is the canonical form of $\overline{H}^r(M)$. In this interpretation, our results generalize the investigation of the torsion form of a higher order linear connection by Yuen, [11].

By (4), ϱ determines a bilinear map $\mathfrak{g}_n^1 \times (\mathbf{R}^n \oplus \mathfrak{g}) \to \mathbf{R}^n \oplus \mathfrak{g}$, $(A, B) \mapsto A \cdot B$. According to [5], we have a decomposition $\mathfrak{g}_n^1 = \mathfrak{g} \oplus (\mathbf{R}^n \otimes \mathbf{R}^{n*}) \oplus (\mathfrak{g} \otimes \mathbf{R}^{n*})$. Hence we can write every $A \in \mathfrak{g}_n^1$ as $A = A_1 + A_2 + A_3$, $A_1 \in \mathfrak{g}$, $A_2 \in \mathbf{R}^n \otimes \mathbf{R}^{n*}$, $A_3 \in \mathfrak{g} \otimes \mathbf{R}^{n*}$, and every $B \in \mathbf{R}^n \oplus \mathfrak{g}$ as $B = B_0 + B_1$, $B_0 \in \mathbf{R}^n$, $B_1 \in \mathfrak{g}$. The same notation will be used for \mathfrak{g}_n^1 -valued and $(\mathbf{R}^n \oplus \mathfrak{g})$ -valued forms. Let $\langle \cdot, \rangle : \mathbf{R}^n \times (\mathbf{R}^n \otimes \mathbf{R}^{n*}) \to \mathbf{R}^n$, $\langle \cdot, \rangle_G : \mathbf{R}^n \times (\mathfrak{g} \otimes \mathbf{R}^{n*}) \to \mathfrak{g}$ be tensor contractions and [,] the bracket of \mathfrak{g} . By direct evaluation, we obtain the formula for $A \cdot B$

(6)
$$(A \cdot B)_0 = \langle A_2, B_0 \rangle,$$

$$(A \cdot B)_1 = [A_1, B_1] + \langle A_3, B_0 \rangle_G.$$

Proposition 2. (Structure equations of θ .) Let ω be a connection form on $W^1(P)$. Then we have

(7)
$$d\theta = -\omega \cdot \theta + \frac{1}{2} [\omega_1, \omega_1] + D\theta,$$

where the g-valued form $[\omega_1, \omega_1]$ is considered an $(\mathbf{R}^n \oplus \mathfrak{g})$ -valued form with zero component in \mathbf{R}^n .

Proof is based on Proposition 1. However, θ is not horizontal. That is why we shall first consider the tensorial form $\tilde{\theta} = \theta h$, i.e. $\tilde{\theta}(X) = \theta(hX)$, where hX means the horizontal component of the vector $X \in T(W^1(P))$. By Proposition 1,

(8)
$$d\tilde{\theta}_{0} = -\langle \omega_{2}, \tilde{\theta}_{0} \rangle + D\tilde{\theta}_{0},$$

$$d\tilde{\theta}_{1} = -[\omega_{1}, \tilde{\theta}_{1}] - \langle \omega_{3}, \tilde{\theta}_{0} \rangle_{G} + D\tilde{\theta}_{1}.$$

Further, let Y be a vertical vector on $W^1(P)$, which is the value of the fundamental vector field determined by an element $A \in \mathfrak{g}_n^1$. By the definition of θ , [5], we have $\theta(Y) = A_1$. Hence $\theta = \tilde{\theta} + \omega_1$, where the g-valued form ω_1 is considered an $(\mathbf{R}^n \oplus \mathfrak{g})$ -valued form with zero component in \mathbf{R}^n . Substituting it into (8), we obtain

(9)
$$d\theta_0 = -\langle \omega_2, \theta_0 \rangle + D\theta_0,$$

$$d\theta_1 = -[\omega_1, \theta_1] - \langle \omega_3, \theta_0 \rangle_G + [\omega_1, \omega_1] + d\omega_1 - D\omega_1 + D\theta_1.$$

According to the structure equations of ω , it is

(10)
$$d\omega_1 = -\frac{1}{2}[\omega_1, \omega_1] + D\omega_1.$$

Comparing (9) and (10), we deduce (7), QED.

3. We have remarked in [4] that a connection on a principal fibre bundle P(B, G) can be defined as a G-invariant cross section $P \to J^1P$. Consider a connection Γ on $W^1(P)$ in such a form, i.e. $\Gamma: W^1(P) \to J^1 W^1(P)$. We have $J^1 W^1(P) = J^1(H^1(B) \oplus J^1P) = J^1 H^1(B) \oplus \tilde{J}^2P$. There is a standard identification $\kappa: J^1 H^1(B) \approx \overline{H}^2(B)$ sending an element $Z = j_x^1 \varphi \in J^1 H^1(B)$, $\varphi(x) = j_0^1 \psi(y)$ into $\chi(Z) = j_0^1 [\varphi(\psi(y)) t_y^{-1}] \in \overline{H}^2(B)$, where $t_y: \mathbb{R}^n \to \mathbb{R}^n$ is the translation $z \mapsto z + y$. On the other hand, the second semi-holonomic prolongation $\overline{W}^2(P)$ of P is equal to $\overline{H}^2(B) \oplus \overline{J}^2P$, [5], so that the jet inclusion $\overline{J}^2P \subset \widetilde{J}^2P$ induces the inclusion $\overline{W}^2(P) \subset J^1 W^1(P)$. We define the reduction $R(\Gamma) \subset \overline{W}^2(P)$ determined by a connection $\Gamma: W^1(P) \to J^1 W^1(P)$ to be the intersection

(11)
$$R(\Gamma) = \Gamma(W^{1}(P)) \cap \overline{W}^{2}(P).$$

Consider the induced connection $\Gamma_0 = \beta_* \Gamma : P \to J^1 P$. We recall, [6], that $R(\Gamma_0) := H^1(B) \oplus \Gamma_0(P)$ is a reduction of $W^1(P)$ to the subgroup $L_n^1 \times i_1(G) \subset G_n^1$, where $i_1 : G \to T_n^1(G)$ is the canonical injection $g \mapsto j_0^1 \hat{g}$, \hat{g} being the constant mapping $x \mapsto g$, $x \in \mathbb{R}^n$.

Lemma 3. We have $\Gamma(u) \in R(\Gamma)$ if and only if $u \in R(\Gamma_0) \subset W^1(P)$.

Proof. Let $\Gamma(u) = j_x^1 \varphi$, where $\varphi = (\varphi_1, \varphi_2)$ is a local cross section of $H^1(B) \oplus J^1 P$. The condition for $j_x^1 \varphi_2$ to be semi-holonomic is $\varphi_2(x) = j_x^1 (j_1^0 \varphi_2) = j_x^1 (\beta \varphi) = \Gamma_0(j_1^0 u)$, where $j_1^0 : J^1 P \to P$ is the jet projection. This is equivalent to $u \in R(\Gamma_0)$, QED.

Consider further the canonical injections $i_2: G \to T_n^2(G)$, $g \mapsto j_0^2 \hat{g}$ and $i: L_n^1 \to L_n^2$. The last mapping can be geometrically described as follows. If $Y \in L_n^1$, $Y = j_0^1 \psi(y)$, then

(12)
$$i(Y) = j_0^1 [t_{\psi(y)} Y t_y^{-1}].$$

Our next assertion generalizes a result by LIBERMANN, [8].

Proposition 3. $R(\Gamma)$ is a reduction of $\overline{W}^2(P)$ to the subgroup $i(L_n^1) \times i_2(G) \subset L_n^2 \times \overline{T}_n^2(G) = \overline{G}_n^2$. Conversely, every reduction Q of $\overline{W}^2(P)$ to $i(L_n^1) \times i_2(G)$ determines a unique connection $\Gamma(Q)$ on $W^1(P)$ such that $Q = R(\Gamma(Q))$.

Proof. Put $\Gamma(v, \Gamma_0(u)) = (Z, T) \in J^1 H^1(B) \oplus J^2 P$, $u \in P$, $v \in H^1(B)$, and Z =

= $j_x^1 \varphi$, $T = j_x^1 \sigma$. Starting from the fact that Γ is G_n^1 -invariant and using the formula for the action of G_n^1 on $W^1(P)$, [5], we find

(13)
$$f(vY, \Gamma_0(ug)) = j_x^1[\varphi(y) Y, \sigma(y) \cdot (i_1(g) Y^{-1} \varphi^{-1}(y))]$$

 $Y \in L_n^1$, $g \in G$. On the other hand, the formula for the action of \overline{G}_n^2 on $\overline{W}^2(P)$ yields

$$(\varkappa(Z), T)(i(Y), i_2(g)) = (\varkappa(Z) i(Y), T. (i_2(g) i(Y)^{-1} \varkappa(Z)^{-1})),$$

see [5]. The relation $\kappa(Z)$ $i(Y) = j_x^1[\varphi(y) Y]$ is known from the linear case, [8]. Further, the injection $i_2: G \to T_n^2(G)$ can be also expressed as $g \mapsto j_0^1[i_1(g) t_y^{-1}]$. Then we find easily $i_2(g)$ $i(Y)^{-1}$ $\kappa(Z)^{-1} = j_x^1(i_1(g) Y^{-1} \varphi^{-1}(y))$. Comparing with (13), we conclude that $R(\Gamma)$ is a reduction to the subgroup $i(L_n^1) \times i_2(G)$. The converse assertion can be proved quite similarly, QED.

We shall also need another geometric characterization of $R(\Gamma)$. We recall that a semi-holonomic connection of the second order on P is a G-invariant cross section $P \to \bar{J}^2 P$, [4]. For every $(v, u) \in H^1(B) \oplus P$, define $\mu(\Gamma)(v, u) = p_2(\Gamma(v, \Gamma_0(u)))$, where $p_2: J^1 W^1(P) \to \bar{J}^2 P$ is the product projection. According to Lemma 3, the values of $\mu(\Gamma)$ lie in $\bar{J}^2 P$.

Lemma 4. For every $Y \in L_n^1$, it is $\mu(\Gamma)(v, u) = \mu(\Gamma)(vY, u)$.

Proof. Let $\Gamma(v, \Gamma_0(u)) = j_x^1(\varphi_1(y), \varphi_2(y))$. Since Γ is invariant, we have $\Gamma(vY, \Gamma_0(u)) = j_x^1(\varphi_1(y), \varphi_2(y))$, QED.

Thus, we may consider $\mu(\Gamma)$ to be a cross section $P \to \overline{J}^2 P$.

Proposition 4. $\mu(\Gamma): P \to \bar{J}^2P$ is a semi-holonomic connection of the second order on P.

Proof. We have to prove that $\mu(\Gamma)$ is G-invariant. But this is a simple consequence of Proposition 3, QED.

Denote by $\Lambda = \lambda_* \Gamma$ the induced connection on $H^1(B)$ and by $R(\Lambda)$ the corresponding reduction of $\overline{H}^2(B)$. Our previous consideration implies

(14)
$$R(\Gamma) = R(\Lambda) \oplus \mu(\Gamma)(P).$$

4. The following assertion generalizes a result by Kobayashi, [3].

Proposition 5. It is $R(\Gamma) \subset W^2(P)$ if and only if $D\theta = 0$.

Proof. We first deduce a lemma. Since $\overline{W}^2(P) \subset W^1(W^1(P))$, every $U \in \overline{W}^2(P)$ determines a mapping $\widetilde{U}^{-1}: T_u(W^1(P)) \to \mathbb{R}^n \oplus \mathfrak{g}_n^1$, where $u \in W^1(P)$ is the underlying jet of U, [5]. Denote by $q: W^1(P) \to B$ the bundle projection.

Lemma 5. Let M be a submanifold of $W^1(P)$ such that $q \mid M$ is a submersion.

Let $\sigma: M \to \overline{W}^2(P)$ be a cross section and θ the $(\mathbf{R}^n \oplus \mathfrak{g}_n^1)$ -valued form on M constructed by means of σ , i.e. $\theta \mid T_u(M) = \widetilde{\sigma(u)}^{-1} \mid T_u(M)$, $u \in M$. Then $\sigma(M) \subset W^2(P)$ if and only if

(15)
$$d\theta_0 = -\langle \theta_2, \theta_0 \rangle, \quad d\theta_1 = -\frac{1}{2} [\theta_1, \theta_1] - \langle \theta_3, \theta_0 \rangle_G.$$

Proof of Lemma 5. For $M=W^1(P)$, the assertion was deduced by direct evaluation by Dekrét, [1]. Using the coordinates of [5] or [1], we have local coordinates a_{ij}^{λ} on fibred manifold $\overline{W}^2(P) \to W^1(P)$, $i, j, \ldots = 1, \ldots, n, \lambda = 1, \ldots, n+1$ dim G. The subspace $W^2(P) \subset \overline{W}^2(P)$ is characterized by $a_{ij}^{\lambda} = a_{ji}^{\lambda}$. Consider (locally) a cross section $\sigma_1: W^1(P) \to \overline{W}^2(P)$ extending σ . Let σ_1 be given by some functions f_{ij}^{λ} , so that σ is given by $f_{ij}^{\lambda} = f_{ij}^{\lambda} \mid M$. Denote by $\overline{\theta}$ the $(\mathbf{R}^n \oplus \mathbf{g}_n^1)$ -valued form on $W^1(P)$ constructed by means of σ_1 . The evaluations by Dekrét imply (in coordinates)

(16)
$$d\bar{\theta}^{i} = \bar{\theta}^{j} \wedge \bar{\theta}^{i}_{j} + \bar{f}^{i}_{jk}\bar{\theta}^{j} \wedge \bar{\theta}^{k},$$
$$d\bar{\theta}^{\alpha} = -\frac{1}{2}c^{\alpha}_{\beta\gamma}\bar{\theta}^{\beta} \wedge \bar{\theta}^{\gamma} + \bar{\theta}^{i} \wedge \bar{\theta}^{\alpha}_{i} + \bar{f}^{\alpha}_{jk}\bar{\theta}^{j} \wedge \bar{\theta}^{k},$$

 $\alpha = n + 1, ..., n + \dim G$. Restricting (16) to M, we find that (15) holds if and only if $f_{ij}^{\lambda} = f_{ij}^{\lambda}$, thus proving Lemma 5.

We are now in position to prove Proposition 5. Denote by $\tilde{\omega} = \tilde{\omega}_1 \oplus \tilde{\omega}_2 \oplus \tilde{\omega}_3$ or $\tilde{\theta} = \tilde{\theta}_0 \oplus \tilde{\theta}_1$ the restriction of the connection form or the canonical form θ to $R(\Gamma)$, respectively. By the definition of $R(\Gamma)$ and by Lemma 3, it is $\tilde{\omega}_1 = \tilde{\theta}_1$ and $\tilde{\theta}_0 \oplus \tilde{\theta}_1 \oplus \tilde{\omega}_2 \oplus \tilde{\omega}_3$ is the $(\mathbf{R}^n \oplus \mathbf{g}_n^1)$ -valued form constructed by means of the cross section $\Gamma \mid R(\Gamma_0)$. According to (7), we have

$$\begin{split} \mathrm{d}\tilde{\theta}_0 &= -\langle \tilde{\omega}_2, \tilde{\theta}_0 \rangle + D\tilde{\theta}_0 \,, \\ \mathrm{d}\tilde{\theta}_1 &= -\tfrac{1}{2} \big[\tilde{\theta}_1, \tilde{\theta}_1 \big] - \langle \tilde{\omega}_3, \tilde{\theta}_0 \rangle_G + D\tilde{\theta}_1 \,. \end{split}$$

Then Proposition 5 follows from Lemma 5, QED.

5. In particular, if Γ is a connection on P and Λ is a linear connection on B, then the prolongation $p(\Gamma, \Lambda)$ of Γ with respect to Λ is an interesting special connection on $W^1(P)$, [7].

Proposition 6. Connection $p(\Gamma, \Lambda)$ is without torsion if and only if Γ is integrable and Λ is without torsion.

Proof. As a direct consequence of the definition, we have $\mu(p(\Gamma, \Lambda)) = \Gamma'$, where Γ' means the prolongation of Γ in the sense of Ehresmann, [2]. According to (14), it is $R(p(\Gamma, \Lambda)) = R(\Lambda) \oplus \Gamma'(P)$. By a result by Kobayashi, [3] (or as a special case of Proposition 5), $R(\Lambda) \subset H^2(B)$ if and only if Λ is without torsion. On the other hand, according to Ehresmann, [2], $\Gamma'(P) \subset J^2P$ if and only if Γ is integrable. By Proposition 5 we prove our assertion, QED.