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PERIODIC SOLUTIONS OF SOME NONLINEAR DIFFERENTIAL
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(Received February 5, 1974)

1. Introduction. This paper is devoted to the study of the vector differential
equation ‘

(B) = (=1 x@0(1) + A x®*D(1) + ... + Ay x'(1) + % [grad F(x(1))] +

+g(x(1) = p(1).-

Under some conditions upon the matrices A4, ..., A,,_; and under very general
assumptions upon the functions F and g, the existence of a periodic solution of (E)
is proved. In the scalar case (see Section 7), it is possible to give simple necessary
and sufficient conditions for the existence of at least one periodic solution of (E).

The obtained results extend the ones from [2] and moreover illustrate some of
the assumptions of [7] in that instead of assuming that some Brouwer’s degree is non
zero, we give explicit conditions upon the function g. Other connections with previous
papers are discussed in [2, 7]. .

The method of proof is very close to the abstract investigations of nonlinear
equations with noninvertible linear parts studied in [1] and [4]. As in [7], L,-
estimates and classical inequalities are used to obtain the C'-a priori bounds (see
Section 5) needed for applying the continuation theorem of coincidence degree
theory [4] stated in Section 2 for reader’s convenience. The main result is stated and
proved in Section 6.

2. A continuation theorem. Let X, Z be normed vector spaces, L:domLc X — Z
be a Fredholm mapping of index zero, i.e. a linear mapping with closed range Im L
having a finite codimension equal to the dimension of the null-space ker L of L.
It is known that this implies the existence of continuous projectors P : X — X,
Q : Z - Z such that

ImP=%kerL, ImL=kerQ
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and we shall assume that the inverse K : Im L — X of the restriction Lof L to dom L n
n ker P is compact. Let now 2 = X be a bounded open set and N : Q —» Z be
a continuous mapping such that N(Q) is bounded. The following theorem is proved
in [4] (see also [8], ch. XI, for the special case of periodic solutions of ordinary
differential equations). '

2.1. Proposition. Let L and N be like above and suppose that the following con-
ditions are satisfied.

(1) For each A€ (0, 1), every possible solution of equation

Lx = ANx
is such that x ¢ 6Q n dom L.
(2) For each x e ker Ln @, Nx ¢ Im L (or equivalently QNx # 0).
(3) The Brouwer degree (see e.g. [3])

d[N, @ nkerL,0] £0,

where Rt : Q nker L— ker L, a » JQNa and J : Im Q — ker L is an isomorphism.

Then, equation
Lx = Nx

has at least one solution x e dom Ln Q.

3. Linear differential operators. R" being the n-dimensional Euclidian space, let us
denote by || and by (-, ) respectively its Euclidian norm and inner product.

If 1 = 0 is an integer, we shall denote by C} the (Banach) space of mappings
x : R - R" which are continuous and T-periodic together with their first / derivatives

with the norm
1

Ixl: = X [sup [x“(9)]]
Jj=0 teR

(x9 = d'x[d¥).
Let us introduce the projector
T
P:Ch->Ch, xo T"J x(t) dt .

0
It is immediate that

[Px]ls = [Px]lo = [0 = [=],

for every x € C7 and that Im P is the subspace of C% of constant functions.
If k = 1is an integer, let Lbe the differential operator defined on

dom L = {x e Cr : x®» exists and is continuous }
by
Lx = —(=1)xCP 4+ 4, x4 4+ 4, X,

«
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where the 4, (i = 1, ..., 2k — 1) are (n x n) constant symmetric matrices. Moreover
let us write

T
. (5 yy =T j (), ()
0
for x, y e C%, and A £ 0 for a negative semi-definite matrix.

3.1. Lemma. If

(A) (=1) Agyez; €0, (=1,...k—1)

holds, then we have
kerL=ImP.

Proof. It is easy to see that constant mappings from R' to R" belong to ker L.
" Now, if Xo € ker L, we have

—(—1) P, x0> + CAXEED, x> 4 .o 4 (Agpo1Xh, Xod> = 0

and integrating by parts and using assumption (A) we obtain
k=1
02y (—1) (Ap-rx§, x> = xP, %y 2 0
j=1
which implies that x, is a constant mapping.

3.2. Lemma. If assumption (A) holds, then
ImL= {xeC}:Px=0}.

Proof. Clearly the n linearly independant conditions Px = 0 are necessary
for x e Im L and the sufficiency follows from Lemma 3.1 and the fact that the
Fredholm alternative holds for. linear periodic ordinary differential equations.
(See e.g. [8].)

If

X = {xedom L: Px =0},

then the restriction L of the operator Lto X is a one-to-one mapping from X onto
Im L and we shall denote its inverse by K (K is called the right inverse of L).

3.3. Lemma. The mapping K : Im L— X is compact (Note that X is considered
with the norm induced by Cy).

Proof. It follows by a standard argument (see e.g. [7] or [8]) from Arzela-Ascoli
theorem.
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4. Necessary conditions. Except mentioning the contrary, we shall suppose from
now that assumption (A) is satisfied. Suppose that conditions

(B) F:R" > R! is of class C?;
(C) g : R" > R" is continuous

hold and, for x, y € R" let us write x < y when x; < y;fori = 1,..., n.

4.1. Lemma. Let pe C} and suppose that a < g(s) < b for all se R". Then,
a necessary condition for the existence of one x € dom L satisfying

(E) (L) () + < [erad FGs0)] + o(x(0) = p(9)
is that

T
a<T"‘j p(r)det <b.

0

Proof. Suppose that x, € C3* satisfied equation (E). Then
d
P = 9(xo()) = - [srad F(xo(*))] € Im L

and, according to Lemma 3.2 we have

T rp(t) dt = T“rg(xo(t-)) dt + 771 J’T(d/dt) [grad F(go(t))] dt =

0 0 0

T
= T1 j g(xo(1)) dt .
]
The assertion follows then immediately from this equality and our assumption.

5. C' — a priori estimates. Let pe C%, Pp =0, be fixed and let g : R - R"
satisfying (C) and the following assumption:

(D) i) sup |g(s)| = M < oo;
seR"
ii) There exists a strictly positive number r, a permutation {i1., i,,} of
of {1,...,n}and an integer 0 < m < n such that
gi,(x) x“ > 0 lf le'll g r (l = 1, oy m) N

gi(x)x;, <0 if |x,|2r (I=m+1,..,n).
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5.1. Lemma. If R, = n'/%r, then, for each y € C3 such that inf |y(f)] = Ro, one
has teR1

T jrg(y(t)) dt 0.

- 0
Proof. It is obvious.

5.2. Lemma. There y, > R, such that for each Ae(0,1) and every possible
solution x € C¥ of

(Ez) (Lx) (1) + A(d[dr) [grad F(x(1))] + 2 g(x(r)) = 4 p(?)
one has
sup [x(1)] < 7.

Proof. It is easy to see that

T

(1) j g(x() dt = 0.
1]

From the equality

{Lx, x) = A[ —<(d/dr) [grad F(x)], x> — <g(x), x> + <p, x>]
we deduce easily, using assumption (A) and simple computations, that

@) x5 |17 [ (60) = o0, 7%5) @)

=

T 1/2
< 0+ fplo) (77 [ 1) (O )
V]
where P = I — P, I the identity. If ® = 2n/T, it is known (see e.g. [8], ch. XI) that
T T T
-t J’ I(P%x) ()2 dt < 02T~ J Py (O dt = @21~ f (O dt
0 0 0
and ,
: AT T
(3) T“‘J [(P€x) (1)]? dt = w"z"T“.[ [x®(e)|? de .
1] 0
Then using (2) and (3) we get
T 1/2
(7 [ oop ae) s e + ol o
0
and hence, by well-known properties of periodic functions,

(Tf* f :Ix'(t)l’dr)mé (2r) 0™ + o).
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Since (see e.g. [8], chapter XI),
1)2

T
sup |(P%x) (1] & 3~/2no~! (T‘l f (D)2 dt) :
teR1 0
we obtain
) sup |(Px) (1)] = 37*r0™*(2n)' T (M + |p]o)-
teR!

From (1) and Lemma 5.1 it follows that there will e;(ist 7€ R such that
[x(@)] < Ro
which implies, using (4),
() 1Pxlo = [(P9) (@) < <@ + [Pox]o < Ry + 37/2n0™2(20)" (M + [ p]).
Clearly the inequalities (4) and (5) imply the wanted assertion.

5.3. Lemma. There exists y, > O such that, for each 1€ (0,1) and every pos-
sible T-periodic solution x of (E;) one has

sup |x'(1)] £ 7, -
teR1

Proof. Let us first consider the case where k = 2. Then (see e.g. [8], chapter XI),
T 1/2
sup [ /(1) = sup |(d/dt) (P°x) (9] < 37**rn0>™" (Tf (o) d‘) =
teR! teR1 [}
< 37 2re732n) (M + | pllo) -
Let now k = 1. Then,

xX'() + Ay x'(1) = 2{p(1) — (d/df) [grad F(x(1))] — g(x(1))}

and hence

S X"y = A{Kp, x"y — ((d/dt) [grad F(x)], x"y — {g(x), x">} <
T 1/2
< [lefo + M + ©™'S(M + |p[0)] (T_’_[ [x"(1)|> d‘) ;
2\ 0

where
0*F (6)

S = sup max
0%, 0¢;

18ISy ij=1,...n

Therefore
T 1/2
sup [x'(¢)] £ 37*n0™! (T‘1 '[ |x"(2)|? dt) <
teR1 0
< 37z07Y(|plo + M + @7 'S(M + [p[0)) = 72 -
6. Sufficient condition. If we define N : Cx — C% by
(Nx) (£) = p(r) — (d/d1) [grad F(x(9))] — g(x(?)) »
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it follows at once from assumptions (B) and (C) that N is continuous and takes
bounded sets into bounded sets. Moreover, finding T-periodic solutions of equation
(E) is clearly equivalent to solving the abstract equation

(6) . Lx = Nx
in Cy n dom L, with L defined in section 3. Clearly, using the results of Section 3,
Land N verify the regularity assumptions needed for Proposition 2.1.

6.1. Theorem. Suppose that p € Cg and Pp = 0 and that assumptions (A) to (D)

hold. Then equation (E) has at least one T-periodic solution.

Proof. We shall show that conditions (1) to (3) of Proposition 2.1 are satisfied
for (6) and

Q={xeCr:|x|y <y + 7.}

with y; (i = 1, 2) defined in section 5. Condition (1) follows at once from Lemmas
5.2 and 5.3 and Condition (2) from Lemma 5.1 applied to constant mappings from R*
into R". Moreover here, P = Q and is the projector defined in Section 3 and we can
take J = —I, which implies that R :ker L — ker L is defined by R(a) = g(a),
a e ker L. Now using assumption (D) and defining # : ker L— ker L, with ker L
naturally identified with R", by

nfa)=a, (I=1,...,m), nfa)=—a,(I=m+1,..n)

we have, when |a| 2 R,,
(9(a), n(a)) > 0
which implies, by the basic properties of Brouwer degree [3], that
dlg,2nkerL,0] =d[n, 2 nkerL,0] = +1

and achieves the proof.

6.2. Remark. In the same way.than in [5] p. 26 or [6], p. 598, it is possible to
show that Theorem 6.1 remains true when the inequalities in (D-ii) are not strict.

7. Necessary and sufficient condition in the scalar case.

7.1. Theorem. Let ay, ..., ay_y be real numbers such that (—1)Y ay_,; <0
(=1..,k=1). Let f and g be continuous real functions such that the limits

9(—0) = lim g(s), g(+o0) = lim g(s)
exist and are finite and such that for all s € R!,
g(— ) < g(s) < g(+ ).
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