

Werk

Label: Article Jahr: 1975

PURL: https://resolver.sub.uni-goettingen.de/purl?31311157X_0100|log59

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

EXISTENCE OF SOLUTIONS OF FUNCTIONAL-DIFFERENTIAL EQUATIONS

Kristína Smítalová, Bratislava (Received November 28, 1973)

In the paper we shall consider the functional-differential equation

$$(1) y'(t) = f(t, y),$$

where $f: R \times C_n \to R_n$ is a functional continuous with respect to the first variable, R the set of real numbers and C_n the class of continuous functions from R to the n-dimensional Euclidean space R_n . Assume that τ and θ are non-negative locally bounded functions $R \to R$. Let $\|\cdot\|$ be the Euclidean norm in R_n . The main result of this paper is the following theorem which is more general then the results recently obtained by Ju. A. RJABOV [3], [4] concerning the existence of solutions of linear or weakly non-linear delayed differential equations with small delay; for complete references see a survey paper of R. D. DRIVER [1].

Theorem 1. Assume that there is a non-negative locally integrable function $h: R \to R$ such that for each $x, y \in C_n$ and each $t \in R$,

(2)
$$||f(t,x)|| \le h(t) \max \{||x(t+\xi)||; -\tau(t) \le \xi \le \vartheta(t)\},$$

(3)
$$||f(t,x) - f(t,y)|| \le h(t) \max \{||x(t+\xi) - y(t+\xi)||; -\tau(t) \le \xi \le \vartheta(t)\},$$

and

(4)
$$\max\left(\int_{t-\tau(t)}^{t}h(\xi)\,\mathrm{d}\xi,\int_{t}^{t+\vartheta(t)}h(\xi)\,\mathrm{d}\xi\right)\leq 1/e.$$

Then for each point $(a, b) \in R \times R_n$ there is a solution of (1) defined for all t which passes through (a, b).

Remark. The equation

(5)
$$y'(t) = A(t) y(t - \tau(t)) + B(t) y(t) + C(t) y(t + \vartheta(t))$$

where A, B, C are locally integrable square matrices $R \to R_{n \times n}$, is a particular case of (1). Theorem 1 now asserts that if the function h(t) = n(||A(t)|| + ||B(t)|| + ||B(t)|| + ||C(t)||) satisfies (4) for $t \in R$ then a solution of (5) defined for all t passes through each point of $R \times R_n$. Here the norm $||(a_{ij})||$ of a matrix is assumed to be max $||a_{ij}||$.

Proof of Theorem 1. Let Ω be the set of those $x \in C_n$, for which x(a) = b and $||x(t)|| \le ||b|| \exp(e|\int_a^t h(\xi) d\xi|)$, for all $t \in R$. Let $\lambda \in (0, 1]$. For $x \in \Omega$ let $F_{\lambda}(x)$ be the function $R \to R_n$ defined by $F_{\lambda}(x)(t) = b + \lambda \int_a^t f(\xi, x) d\xi$. Using (2) we get

$$\begin{aligned} \|F_{\lambda}(x)(t)\| &\leq \|b\| + \lambda \left\| \int_{a}^{t} f(\xi, x) \, \mathrm{d}\xi \right\| \leq \\ &\leq \|b\| \left(1 + \lambda \left| \int_{a}^{t} h(\xi) \, \exp\left(e \left| \int_{a}^{\xi} h(\eta) \, \mathrm{d}\eta \right| \right). \\ &\cdot \exp\left(\max\left(e \int_{\xi - \tau(\xi)}^{\xi} h(\eta) \, \mathrm{d}\eta, \quad e \int_{\xi}^{\xi + \vartheta(\xi)} h(\eta) \, \mathrm{d}\eta \right) \right) \mathrm{d}\xi \right| \right) \leq \\ &\leq \|b\| \left(1 + e \int_{a}^{t} h(\xi) \, \exp\left(e \left| \int_{a}^{\xi} h(\eta) \, \mathrm{d}\eta \right| \right) \mathrm{d}\xi \right) = \|b\| \, \exp\left(e \left| \int_{a}^{t} h(\xi) \, \mathrm{d}\xi \right| \right). \end{aligned}$$

Thus $F_{\lambda}: \Omega \to \Omega$. Now define the following Picard iterations, assuming that λ is fixed, $0 < \lambda < 1$: $x_1(t) \equiv b$ and $x_{k+1} = F_{\lambda}(x_k)$, for $k = 1, 2, \ldots$ Clearly for each t, $||x_2(t) - x_1(t)|| \le ||b|| ||f_a^t h(\xi) d\xi| \le ||b|| \exp(e|f_a^t h(\xi) d\xi|)$. Assume that, for all t, $||x_k(t) - x_{k-1}(t)|| \le K||b|| \exp(e|f_a^t h(\xi) d\xi|)$. Then using (3) we obtain

$$\begin{aligned} \|x_{k+1}(t) - x_k(t)\| &\leq K \|b\| \lambda \left| \int_a^t h(\xi) \exp \right|. \\ \cdot \left(\max \left(e \left| \int_a^{\xi - \tau(\xi)} h(\eta) \, \mathrm{d} \eta \right|, \quad e \left| \int_a^{\xi + \vartheta(\xi)} h(\eta) \, \mathrm{d} \eta \right| \right) \right| \, \mathrm{d} \xi \right) &\leq \\ &\leq K \lambda \|b\| e \left| \int_a^t h(\xi) \exp \left(e \left| \int_a^{\xi} h(\eta) \, \mathrm{d} \eta \right| \right) \, \mathrm{d} \xi \right| = K \lambda \|b\| \exp \left(e \left| \int_a^t h(\xi) \, \mathrm{d} \xi \right| \right). \end{aligned}$$

Since $0 < \lambda < 1$, the sequence x_n converges almost uniformly to some $x \in \Omega$ such that $F_{\lambda}(x) = x$.

Let $\{\lambda_n\}$ be a sequence of members of the open interval (0, 1) converging to 1. For every n, let y_n satisfy the equation $y_n = F_{\lambda_n}(y_n)$. All $y_n \in \Omega$ are almost uniformly bounded (i.e. uniformly bounded on each compact). Let $A \subset R$ be a compact. By (2) we have, for each $t \in A$,

$$||y'_n(t)|| \le h(t) ||b|| \exp\left(\max\left(e\left|\int_a^u h(\eta) d\eta\right|, e\left|\int_a^v h(\eta) d\eta\right|\right)\right),$$

where $u = \inf_{\xi \in A} \xi - \tau(\xi)$, $v = \sup_{\xi \in A} \xi + \vartheta(\xi)$. Therefore $||y_n(t) - y_n(s)|| \le \sup_{\xi \in A} ||y_n(t)|| \le$

Let I be a compact subinterval of R. For $t \in I$ we have

$$\|y(t) - b - \int_{a}^{t} f(\xi, y) d\xi \| \leq \|y(t) - y_{n(k)}(t)\| +$$

$$+ \lambda_{n(k)} \|b\| \cdot \left\| \int_{a}^{t} h(\xi) d\xi \right\| \max_{\xi \in B} \|y_{n(k)}(\xi) - y(\xi)\| + (1 - \lambda_{n(k)}) \left\| \int_{a}^{t} f(\xi, y) d\xi \right\|,$$

where $B = [\inf_{\xi \in I} \xi - \tau(\xi), \sup_{\xi \in I} \xi + \vartheta(\xi)]$. Clearly the right-hand side of the inequality tends to 0 whenever $k \to \infty$, q.e.d.

Remark. If the assumptions of Theorem 1 are satisfied with the constant 1/e replaced by a positive constant c < 1/e then for each point of $R \times R_n$ there is exactly one solution of (1) which belongs to Ω and passes through the point.

The constant 1/e in Theorem 1 is the best possible. To see this we first prove the following

Lemma. For every sufficiently small $\delta > 0$ there are real numbers a, b with $a < 0, 0 < b < \pi$ such that $x(t) = e^{at} \cos(bt)$ is a solution of the equation

(6)
$$x'(t)' = -e^{\delta-1}x(t-1),$$

for all real t.

Proof. For $\xi \leq 0$ put $\varphi(\xi) = e^{\delta - 1 - \xi} + \xi$. Then $\varphi > 0$. Indeed, if $\varphi(u) = 0$ for some u < 0 then we may assume that u is the least root of φ , since $\lim_{\xi \to -\infty} \varphi(\xi) = +\infty$. In this case we have $\varphi'(u) \leq 0$, and consequently, $\varphi(u) + \varphi'(u) \leq 0$, i.e. $u \leq -1$. On the other hand, φ is a decreasing function in $(-\infty, -1]$, and $\varphi(-1) > 0$, a contradiction.

Let $\psi(\xi) = \varphi(\xi) \left(e^{\delta - 1 - \xi} - \xi \right) = e^{2(\delta - 1 - \xi)} - \xi^2$. Clearly $\psi(\xi) > 0$ for all $\xi \le 0$. Let $\omega(\xi) = \xi e^{\xi} e^{1 - \delta} + \cos \sqrt{\psi(\xi)}$. We show that ω has a root in (-2, 0). For sufficiently small δ we have $\psi(0) < \pi^2/4$. Since $\psi(-2) > \pi^2/4$, there is $v \in (-2, 0)$ such that $\psi(v) = \pi^2/4$, i.e. $\omega(v) < 0$. Since $\omega(0) > 0$, there is $a \in (-2, 0)$ such that $\omega(a) = 0$.

The function $x(t) = e^{at} \cos(t \sqrt{\psi(a)})$ is a solution of (6). Indeed, a simple calculation shows that x is a solution of (6) if and only if $ae^{1+a-\delta} = -\cos\sqrt{\psi(a)}$, and $e^{1+a-\delta} \sqrt{\psi(a)} = \sin\sqrt{\psi(a)}$. But the first equality is true since it is equivalent to $\omega(a) = 0$. To see that the second equality is also true note that if δ is sufficiently