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EXISTENCE OF SOLUTIONS
OF FUNCTIONAL-DIFFERENTIAL EQUATIONS

KRISTINA SMITALOVA, Bratislava

(Received November 28, 1973)

In the paper we shall consider the functional-differential equation

(1) y(t) = 1(t. y),

where f: R x C, —» R, is a functional continuous with respect to the first variable,
R the set of real numbers and C, the class of continuous functions from R to the
n-dimensional Euclidean space R,. Assume that ¢ and 3 are non-negative locally
bounded functions R — R. Let || be the Euclidean norm in R,. The main result
of this paper is the following theorem which is more general then the results recently
obtained by Ju. A. RiaBov [3], [4] concerning the existence of solutions of linear or
weakly non-linear delayed differential equations with small delay, for complete refer-
ences see a survey paper of R. D. DRIVER [1].

Theorem 1. Assume that there is a non-negative locally integrable function
h : R — R such that for each x, y € C, and each t € R,

) 176 %)) < H(o) max {] L () < €5 99},
() 7 %) = 56 )| S ) max {Jx(t + &) = ¥(¢ + )]
d (1) & < 90)},

) max (f We) dé, j M(r)h(é)dC)é ife.

t—1(t) t

Then for each point (a, b) € R x R, there is a solution of (1) defined for all t which
passes through (a, b).

Remark. The equation
(5) Y'(1) = A1) y(t — (1)) + B(?) y(t) + C(1) y(t + (1))
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where A, B, C are locally integrable square matrices R —» R, ,,, is a particular
case of (1). Theorem 1 now asserts that if the function h(t) = n(|A(?)| + |B(?)| +
+ | C(2)||) satisfies (4) for t € R then a solution of (5) defined for all t passes through
each point of R x R,. Here the norm |(a,;)|| of a matrix is assumed to be max |a;).

Proof of Theorem 1. Let Q be the set of those x € C,, for which x(a) = b and

[x(@)| < |o] exp (e]f h(¢) d&|), for all e R. Let A€ (0,1]. For xeQ let Fy(x)
be the function R — R, defined by Fy(x) (f) = b + A [} f(&, x) d¢. Using (2) we get

IF:) @] = ] + 2

J (& %) dé” <

J 00 (<] [ ).
e om0
< ] (1 b J’:h(g) exp (e th(n) dnl) dé) _ [b] exp <e f :h(é)ch.

Thus F; : Q - Q. Now define the following Picard iterations, assuming that 4 is
fixed, 0 < A < 1: x4(f) = b and x,4; = F;(x;), for k = 1, 2, .... Clearly for each ¢,
[x2(8) = x1(2)]| < ||B] |2 n(E) d&| < ||b] exp (e|[i h(¢) d&|). Assume that, for all 1,
[x(t) = xk-1(t)]| = K|l exp (e| 5 h(£) d&|). Then using (3) we obtain

< |p| (1 + 4
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(o)
J' jh(n) dnl) ae| = K] exp (e j :h(é) ch .

Since 0 < A < 1, the sequence x, converges almost uniformly to some x € 2 such
that F,;(x) = x.

Let {,1,,} be a sequence of members of the open interval (0, 1) converging'.tozl.
For every n, let y, satisfy the equation y, = F, (v,). All y, € Q are almost uniformly
bounded (i.e. uniformly bounded on each compact) Let A < R be a compact.

By (2) we have, for each t € 4,
150 5 40 o] exp (max ( [y, j ) dn')) ,

< Kb e
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where u =inf¢ — 1(¢), v = supé + 9(¢). Therefore |y () — yu(s)]| =

EeA
< const |[; h(&) d¢| for t, s € A. Consequently the functions {y,,}are equicontinuous
on each compact and hence there is a subsequence {yk(,,)}of yn, Which converges almost
uniformly to some y € Q. Clearly y(a) = b. It remains to show that y is a solution
of (1) or, which is the same, of the corresponding integral equation.
Let I be a compact subinterval of R. For t € I we have

5o — b — f(é 5) dcu 1) = yaold] +

j 1@

where B = [inf ¢ — 1(&), sup ¢ + 9(¢)]. Clearly the right-hand side of the inequality

el &el
tends to 0 whenever k — o0, g.e.d.
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Remark. If the assumptions of Theorem 1 are satisfied with the constant 1/e
replaced by a positive constant ¢ < 1/e then for each point of R x R, there is exactly
one solution of (1) which belongs to 2 and passes through the point.

The constant 1/e in Theorem 1 is the best possible. To see this we first prove the
following

Lemma. For every sufficiently small 6 > 0 there are real numbers a, b with
a <0,0 < b < = suchthat x(t) = € cos (bt) is a solution of the equation

(6) x’(t)'= - Ix(t - 1),

for all real t.

Proof. For £ <0 put (&) = e®'7¢ + & Then ¢ > 0. Indeed, if ¢(u) =0

for some u < 0 then we may assume that u is the least root of ¢, since lim ¢(¢) =
{2 -

= +00. In this case we have ¢'(u) < 0, and consequently, ¢(u) + ¢'(u) < 0, i.e.

u < —1. On the other hand, ¢ is a decreasing function in (— o0, —1], and ¢(—1) >

> 0, a contradiction.

Let Y(&) = @(&) (e®717% — &) = 2@ 179 — 2, Clearly (&) > 0 for all ¢ < 0.
Let (&) = Eee’ % + cos \/y(£). We show that w has a root in (-2, 0). For suf-
ficiently small § we have y(0) < n?/4. Since Y(—2) > n?[4, there is ve(—2,0)
such that y(v) = n%/4, i.e. w(v) < 0. Since w(0) > 0, there is a € (—2, 0) such that
w(a) = 0.

The function x(tf) = e* cos (t \/¢(a)) is a solution of (6) Indeed, a simple cal-
culation shows that x is a solution of (6) if and only if ae' **7% = — cos \/y(a),
and e'**7?/y(a) = sin \/Y(a). But the first equality is true since it is equivalent
to w(a) = 0. To see that the second equality is also true note that if ¢ is sufficiently
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