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ON ASYMPTOTIC BEHAVIOUR OF CENTRAL DISPERSIONS
OF LINEAR DIFFERENTIAL EQUATIONS OF THE SECOND ORDER

MirosLAV BARTUSEK, Brno
(Received September 10, 1973)

1.1. Consider a differential equation
(a) Y =4q(t)y, qeCa,b), b

where C"[a, b) (n being a non-negative integer) is the set of all continuous functions
having continuous derivatives up to and including the order » on [a, b). In all the
paper we will deal only with oscillatory (¢t — b_) differential equations (i.e. every
non-trivial solution has infinitely many zeros on every interval of the form [t,, b),
to € [a, b)).

Let y be a non-trivial solution of (q) vanishing at € [a, b). If ¢(f) is the first zero
of y lying to the right from ¢, then ¢ is called the basic central dispersion of the 1-st
kind of (q) (briefly, dispersion of (q)). The function ¢ has the following properties
(see [2] § 13):

1) 1) ¢ € C[a, b),
2) ¢'(t) > 0 on [a, b),
3) ¢(t) >t on [a,b),
4) }_{I:l_ o(t) = b,

1 m 3 m\ 2 ,
5) — 5“’—, +—<"%> +q(p) 9 = q(t), te[a,b),
A AN

6) ¢'(t)ég(i) t<t <t <o).

a(t)’

1.2. In our later considerations we will generalize some of the following results
which have been proved by the author of [3] (see also [1]):
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Theorem 1. Let q e C"[a, ), pe C"[a, ) (n 2 0 being an integer) and let
g€ C'[a, ) if n = 0. Let lim sup ¢(t) < 0, hm mf q(t) > — oo, 11m (q(t) - p(t)) =

t—

=0, lim q (t) = 0andif n > 0letlim q®(¢) = 0 lim p®(t) = Ofor k=1,2,.

100 t— o0 t— o

If @, @ are the dtsperswns of (q) and y" = p(t) y, respectively, then
lim(p(f) — ()™ =0, k=1,2,..,n+3.
t— o0

Lemma 1. Let g € C°[a, b), lim sup g(f) < 0. Let ¢ be the dispersion of the dif-
t—=b—
ferential equation (q). Then there exists a number k > 0 such that

o(t) —t <k, telab).

2. Lemma 2. Let ¢ be the dispersion of an oscillatory (t > b_) differential
equation (q), g € C'[a, b), lim sup g(t) < 0. Let
t-b—

lim max |q'(x)| (e(f) — 1) = 0.
t—=b— xe[t,p(1)]

Then
limg'(f) =1,
t=>b—
lim ¢"(t) = lim ¢”(r) = 0.
t—=b— t—>b—
Proof. It follows from the assumption lim sup g(f) = ¢ < 0 and from Lemma 1
t=b_

that there exist numbers t, € [a, b), K > 0 such that we have

o()—t =K, tela,b),
q(t)gg, te[to, b).

Then according to (1) 6, we obtain for ¢ = t, that

la(e) (1 = ¢7)| = la(o)| - 1—3% = f;% Ja(t2) = ()] <
s a2 @1 (o — ) 5 (142 00) ma )] 000 — 9

holds where t < t; <ty < @(t), &€ (ty, t2), n € (t2, @(1)),
My(1) = la'(n)l (o) = 12) = max-lg')| (¢ — )53 0,
xe[t,o(t

M, = max M,(t).
te[a,b)
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Hence it follows

@) Iim [q() (1 — ¢)| =0

and thus lim ¢’(f) = 1. So the first part of the statement is proved.

t—=b-

According to (2) and (1) 5, we have
lim | 30”9’ + 3¢"| = lim |4(z) — g(¢) 0| =
t—b- t—b-
= lim |(q(t) ~ a(@)) + (o) (1 ~ ¢*)] = lim|q(1) — 4(o)| =

=lmig(Q)(— o) = im max jg (x)l (p-1=0

where ¢ € (¢, ¢). So

(3) lim | —3¢"¢" + 30" = 0.

t—=b-

Suppose lim ¢”? = ¢ > 0. Then lim ¢’(f) = =+ co but this is in contradiction with the

t—=b- t—=b-

proved part of the lemma. Assume that lim ¢"* does not exist. Let M = {t€ [a, b),

t—b-
@"(t) = 0}. Then the set M contains every local maximum of the function ¢”?
and the point t = b is an accumulation point of M. According to (3),
lim ¢"%(f) = 0

t—b-
, teM

holds and hence we have lim ¢"*(f) = 0. But this is in contradiction with our

t—b-
assumption.
Thus lim ¢”(f) = 0 and the rest of the statement follows from (3).
t—b-

Lemma 3. Let (q), (q) be oscillatory (t - b_) differential equations such that
qeC%a, b), geC'[a,b), hm sup g(t) <0 and ]1m (q(t) —g(t)) = 0. Let ¢(p)

be the dispersion of (q) ((q)) and et

lim max |7'(x)| (¢(t) — 1) =0

t=b- xelt,p(1)]

where 9(t) = max (¢(t), #(t)). Then

lime'(t) =1,
t-b-

lim ¢"(f) = lim ¢"(f) = 0.
t-b- t=b-
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Proof. By virtue of (1) 6, we have:

2(@0) (2'() = 7)) = 2(3(0)- (‘l('x) q(t3)> _

() a(ta)
= q(qti(;)(t()l) (q(t,) a(ts) — a(t3) a(t,)) =
PO r40,) (alt) — a(e1)) + a() @) — a(t2)) +

" a(t) a(ts)
+ (1) (@(ts) — a(t2)) — a(t2) (@(t) — a(t:)]

where

t<tp <t <o), t<ty<t,<at).
It follows from the relations

limsup g(t) = ¢ <0, ll_l.rbn_ (q(r) —a(r) =0

t—b-

that there exists t, € [a, b) such that
1,_
la)l = [a()] = I—Zl, te[to, b).

Then the following inequalities are valid for t € [t,, b) and ts € [, ¢(t)) (by the
Taylor Theorem):

lé(«ﬁ(t)) -4(ts)] <

'q(w(t)) a(ts)

<2 _l‘l(‘z)| + My (1) [a(ta)] + Ma(2) _

a(t2) - 4(ta) |~ | a(r2)  a(ta) |a(z2)| . |a(ta)] _ N
< 2.M,(1) 2. M,(1) - _ 2. Mo\ o
R [ B (e
Here
l(t) max Iq )| () = ©) 752 0, M2=:[1:?:)M1(t).
Hence

|a(@(@) (¢'() — FO)] = M; - [la(t) — a(t)] + [a(t2) — a(r2)] +
+|7€I (0 — )+ [7E) (@ - 9] =0

for & €(t,, ts), &2 €(ty, t5) and thus
() lim |7(@(1) (¢'() = #'(9)] = 0.
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This implies lim (¢’(t) — @'(f)) = 0 and by virtue of Lemma 2 we can see that
t—b-

lim (p’(t) = 1 which proves the first part of the lemma.

t—b-

The dispersions ¢ and @ fulfil the non-linear differential equation (1) 5:

1 (Pr// 3 (pnz 2

SEog JETS§ SUP R + q(t),
29 a7 a(o) 0 + q(t)
l(ﬁ”l 3 —n2 N —12 _

S ok SV b S +g(1) .
37 Tag a(@) @ + q(r)

Subtracting and modifying these equations we get (by (4) and the proved part
of Lemma 3):

Lio" 3™\ 3/o" g
E-9)E- )
= |q(1) — a(r) — a(e) @'* + 4(@) | =
= |(a(r) - 4(1) — @(@) (' — &) (¢' + &) -

— o”[(a(e) — a(9)) + (a(e) — a(@)]| < |a(®) — a(t)] +
+13(@) (0" = @) (¢ + )| + ¢0?|ale) — ao)| +
+ ¢ max |g'(x)| (e(r) — 1) 755 0.

xelt,0()]

Taking into account Lemma 2 {(for ¢ = § we have lim @"(f) = lim $"(r) = 0)
t—>b- t—b-

we can see from this that

©) lim Ag'* = lim |~4g" . o' + 39" = 0
‘-' - .

t—b-

holds. The relation (5) is the same as the relation (3) and therefore we can prove in
the same way as in Lemma 1 that

lim ¢"(f) = lim ¢"(t) = 0.
t—=b- t—=b-
So the statement of the lemma is proved.

Theorem 2. Let (q), (q) be oscillatory (t - ) differential equations such that
g€ C%a, ), € C'[a, ), limsup g(f) < 0, lim (q(t) — g(¢r)) = 0, lim '(f) = 0.
t—= t— o

t— o

Let ¢ be the dispersion of (q). Then

lim () = 1, lim¢”(t) = lim ¢"(t) = 0.
t— 00 t—=o0

t— o
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