

## Werk

Label: Article **Jahr:** 1975

**PURL:** https://resolver.sub.uni-goettingen.de/purl?31311157X\_0100|log57

## **Kontakt/Contact**

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

## ON ASYMPTOTIC BEHAVIOUR OF CENTRAL DISPERSIONS OF LINEAR DIFFERENTIAL EQUATIONS OF THE SECOND ORDER

MIROSLAV BARTUŠEK, Brno (Received September 10, 1973)

1.1. Consider a differential equation

(q) 
$$y'' = q(t) y$$
,  $q \in C^0[a, b)$ ,  $b \le \infty$ 

where  $C^n[a, b)$  (n being a non-negative integer) is the set of all continuous functions having continuous derivatives up to and including the order n on [a, b). In all the paper we will deal only with oscillatory  $(t \to b_-)$  differential equations (i.e. every non-trivial solution has infinitely many zeros on every interval of the form  $[t_0, b)$ ,  $t_0 \in [a, b)$ ).

Let y be a non-trivial solution of (q) vanishing at  $t \in [a, b)$ . If  $\varphi(t)$  is the first zero of y lying to the right from t, then  $\varphi$  is called the basic central dispersion of the 1-st kind of (q) (briefly, dispersion of (q)). The function  $\varphi$  has the following properties (see [2] § 13):

(1) 1) 
$$\varphi \in C^{3}[a, b)$$
,  
2)  $\varphi'(t) > 0$  on  $[a, b)$ ,  
3)  $\varphi(t) > t$  on  $[a, b)$ ,  
4)  $\lim_{t \to b_{-}} \varphi(t) = b$ ,  
5)  $-\frac{1}{2} \frac{\varphi'''}{\varphi'} + \frac{3}{4} \left(\frac{\varphi''}{\varphi'}\right)^{2} + q(\varphi) \varphi'^{2} = q(t), \ t \in [a, b),$   
6)  $\varphi'(t) = \frac{q(t_{1})}{q(t_{2})}, \ t < t_{1} < t_{2} < \varphi(t).$ 

1.2. In our later considerations we will generalize some of the following results which have been proved by the author of [3] (see also [1]):

**Theorem 1.** Let  $q \in C^n[a, \infty)$ ,  $p \in C^n[a, \infty)$   $(n \ge 0 \text{ being an integer})$  and let  $q \in C^1[a, \infty)$  if n = 0. Let  $\limsup_{t \to \infty} q(t) < 0$ ,  $\liminf_{t \to \infty} q(t) > -\infty$ ,  $\lim_{t \to \infty} (q(t) - p(t)) = 0$ ,  $\lim_{t \to \infty} q'(t) = 0$  and if n > 0 let  $\lim_{t \to \infty} q^{(k)}(t) = 0$ ,  $\lim_{t \to \infty} p^{(k)}(t) = 0$  for k = 1, 2, ..., n. If  $\varphi$ ,  $\overline{\varphi}$  are the dispersions of (q) and y'' = p(t) y, respectively, then

$$\lim_{t\to\infty} (\varphi(t) - \bar{\varphi}(t)^{(k)} = 0, \quad k = 1, 2, ..., n + 3.$$

**Lemma 1.** Let  $q \in C^0[a, b]$ ,  $\limsup_{t \to b^-} q(t) < 0$ . Let  $\varphi$  be the dispersion of the differential equation (q). Then there exists a number k > 0 such that

$$\varphi(t) - t \leq k$$
,  $t \in [a, b)$ .

**2. Lemma 2.** Let  $\varphi$  be the dispersion of an oscillatory  $(t \to b_-)$  differential equation (q),  $q \in C^1[a, b)$ ,  $\limsup_{t \to b^-} q(t) < 0$ . Let

$$\lim_{t\to b^-}\max_{x\in[t,\varphi(t)]}|q'(x)|\left(\varphi(t)-t\right)=0.$$

Then

$$\lim_{t\to b^-}\varphi'(t)=1\;,$$

$$\lim_{t\to b^-}\varphi''(t)=\lim_{t\to b^-}\varphi'''(t)=0.$$

Proof. It follows from the assumption  $\limsup_{t\to b_{-}} q(t) = c < 0$  and from Lemma 1 that there exist numbers  $t_0 \in [a, b), K > 0$  such that we have

$$\varphi(t) - t \leq K, \quad t \in [a, b),$$

$$q(t) \leq \frac{c}{2}, \quad t \in [t_0, b).$$

Then according to (1) 6, we obtain for  $t \ge t_0$  that

$$|q(\varphi)(1-\varphi')| = |q(\varphi)| \cdot \left|1 - \frac{q(t_1)}{q(t_2)}\right| = \left|\frac{q(\varphi)}{q(t_2)}\right| \cdot |q(t_2) - q(t_1)| \le$$

$$\le \frac{|q(t_2)| + M_1(t)}{|q(t_2)|} \cdot |q'(\xi)| \cdot (t_2 - t_1) \le \left(1 + \frac{2}{c} M_2\right) \max_{x \in [t, \varphi(t)]} |q'(x)| \cdot (\varphi(t) - t)$$

holds where  $t < t_1 < t_2 < \varphi(t)$ ,  $\xi \in (t_1, t_2)$ ,  $\eta \in (t_2, \varphi(t))$ ,

$$M_1(t) = |q'(\eta)| (\varphi(t) - t_2) \leq \max_{x \in [t, \varphi(t)]} |q'(x)| (\varphi - t) \xrightarrow[t \to b]{} 0,$$

$$M_2 = \max_{t \in [a,b)} M_1(t).$$

Hence it follows

(2) 
$$\lim_{t \to b^{-}} |q(\varphi)(1-\varphi')| = 0$$

and thus  $\lim \varphi'(t) = 1$ . So the first part of the statement is proved.

According to (2) and (1) 5, we have

$$\lim_{t \to b_{-}} \left| -\frac{1}{2} \varphi''' \varphi' + \frac{3}{4} \varphi''^{2} \right| = \lim_{t \to b_{-}} \left| q(t) - q(\varphi) \varphi'^{2} \right| =$$

$$= \lim_{t \to b_{-}} \left| (q(t) - q(\varphi)) + q(\varphi) (1 - {\varphi'}^{2}) \right| = \lim_{t \to b_{-}} \left| q(t) - q(\varphi) \right| =$$

$$= \lim_{t \to b_{-}} \left| q'(\xi) (t - \varphi) \right| \le \lim_{t \to b_{-}} \max_{x \in [t, \varphi(t)]} \left| q'(x) \right| (\varphi - t) = 0$$

where  $\xi \in (t, \varphi)$ . So

(3) 
$$\lim_{t \to b_{-}} \left| -\frac{1}{2} \varphi''' \varphi' + \frac{3}{4} \varphi''^{2} \right| = 0.$$

Suppose  $\lim_{t\to b_{-}} \varphi''^{2} = c > 0$ . Then  $\lim_{t\to b_{-}} \varphi'(t) = \pm \infty$  but this is in contradiction with the proved part of the lemma. Assume that  $\lim_{t\to b_{-}} \varphi''^{2}$  does not exist. Let  $M = \{t \in [a, b], \varphi'''(t) = 0\}$ . Then the set M contains every local maximum of the function  $\varphi''^{2}$  and the point t = b is an accumulation point of M. According to (3),

$$\lim_{\substack{t \to b \\ t \in M}} \varphi''^2(t) = 0$$

holds and hence we have  $\lim_{t\to b_-} \varphi''^2(t) = 0$ . But this is in contradiction with our assumption.

Thus  $\lim_{t\to b_{-}} \varphi''(t) = 0$  and the rest of the statement follows from (3).

**Lemma 3.** Let (q),  $(\overline{q})$  be oscillatory  $(t \to b_-)$  differential equations such that  $q \in C^0[a, b)$ ,  $\overline{q} \in C^1[a, b)$ ,  $\limsup_{t \to b_-} \overline{q}(t) < 0$  and  $\lim_{t \to b_-} (q(t) - \overline{q}(t)) = 0$ . Let  $\varphi(\overline{\varphi})$  be the dispersion of (q)  $((\overline{q}))$  and let

$$\lim_{t\to b_-} \max_{x\in[t,\varphi(t)]} |\overline{q}'(x)| (\overline{\overline{\varphi}}(t)-t) = 0$$

where  $\overline{\overline{\varphi}}(t) = \max(\varphi(t), \overline{\varphi}(t))$ . Then

$$\lim_{t\to b_-}\varphi'(t)=1,$$

$$\lim_{t\to b_-}\varphi''(t)=\lim_{t\to b_-}\varphi'''(t)=0.$$

Proof. By virtue of (1) 6, we have:

$$\begin{split} \bar{q}(\bar{\varphi}(t)) \left( \varphi'(t) - \bar{\varphi}'(t) \right) &= \bar{q}(\bar{\varphi}(t)) \cdot \left( \frac{q(t_1)}{q(t_2)} - \frac{\bar{q}(t_3)}{\bar{q}(t_4)} \right) = \\ &= \frac{\bar{q}(\bar{\varphi}(t))}{q(t_2) \, \bar{q}(t_4)} \left( q(t_1) \, \bar{q}(t_4) - \bar{q}(t_3) \, q(t_2) \right) = \\ &= \frac{\bar{q}(\bar{\varphi}(t))}{q(t_2) \, \bar{q}(t_4)} \left[ \bar{q}(t_4) \left( q(t_1) - \bar{q}(t_1) \right) + \bar{q}(t_3) \left( \bar{q}(t_2) - q(t_2) \right) + \\ &+ \bar{q}(t_1) \left( \bar{q}(t_4) - \bar{q}(t_2) \right) - \bar{q}(t_2) \left( \bar{q}(t_3) - \bar{q}(t_1) \right) \right], \end{split}$$

where

$$t < t_1 < t_2 < \varphi(t), \quad t < t_3 < t_4 < \bar{\varphi}(t).$$

It follows from the relations

$$\lim_{t\to b_{-}}\sup \overline{q}(t)=c<0, \quad \lim_{t\to b_{-}}(q(t)-\overline{q}(t))=0$$

that there exists  $t_0 \in [a, b)$  such that

$$|q(t)| \geq \frac{1}{2} |\bar{q}(t)| \geq \frac{|c|}{4}, \quad t \in [t_0, b).$$

Then the following inequalities are valid for  $t \in [t_0, b)$  and  $t_5 \in [t, \overline{\overline{\varphi}}(t))$  (by the Taylor Theorem):

$$\left| \frac{\overline{q}(\overline{\varphi}(t)) \cdot \overline{q}(t_{5})}{q(t_{2}) \cdot \overline{q}(t_{4})} \right| \leq 2 \left| \frac{\overline{q}(\overline{\varphi}(t))}{\overline{q}(t_{2})} \cdot \frac{\overline{q}(t_{5})}{\overline{q}(t_{4})} \right| \leq 2 \cdot \frac{|\overline{q}(t_{2})| + M_{1}(t)}{|\overline{q}(t_{2})|} \cdot \frac{|\overline{q}(t_{4})| + M_{1}(t)}{|\overline{q}(t_{4})|} \leq \\
\leq 2 \cdot \left( 1 + \frac{2 \cdot M_{1}(t)}{|c|} \right) \left( 1 + \frac{2 \cdot M_{1}(t)}{|c|} \right) \leq 2 \cdot \left( 1 + \frac{2 \cdot M_{2}}{|c|} \right)^{2} = M_{3} < \infty.$$

Here

$$M_1(t) = \max_{x \in [t, \overline{\varphi}(t)]} |\overline{q}'(x)| (\overline{\varphi}(t) - t) \xrightarrow[t \to b^{-}]{} 0, \quad M_2 = \max_{t \in [t_0, b)} M_1(t).$$

Hence

$$\begin{aligned} \left| \bar{q}(\bar{\varphi}(t)) \left( \varphi'(t) - \bar{\varphi}'(t) \right) \right| &\leq M_3 \cdot \left[ \left| q(t_1) - \bar{q}(t_1) \right| + \left| \bar{q}(t_2) - q(t_2) \right| + \\ &+ \left| \bar{q}'(\xi_1) \right| \left( \overline{\varphi} - t \right) + \left| \bar{q}'(\xi_2) \right| \left( \overline{\varphi} - t \right) \right] \xrightarrow[t \to b^{-}]{} 0 \end{aligned}$$

for  $\xi_1 \in (t_2, t_4)$ ,  $\xi_2 \in (t_1, t_3)$  and thus

(4) 
$$\lim_{t\to b^{-}}\left|\bar{q}(\bar{\varphi}(t))\left(\varphi'(t)-\bar{\varphi}'(t)\right)\right|=0.$$

This implies  $\lim_{t\to b_-} (\varphi'(t) - \bar{\varphi}'(t)) = 0$  and by virtue of Lemma 2 we can see that  $\lim_{t\to b_-} \varphi'(t) = 1$  which proves the first part of the lemma.

The dispersions  $\varphi$  and  $\overline{\varphi}$  fulfil the non-linear differential equation (1) 5:

$$-\frac{1}{2}\frac{\varphi'''}{\varphi'} + \frac{3}{4}\frac{\varphi''^{2}}{\varphi'^{2}} = -q(\varphi)\varphi'^{2} + q(t),$$

$$-\frac{1}{2}\frac{\bar{\varphi}'''}{\bar{\varphi}'} + \frac{3}{4}\frac{\bar{\varphi}''^{2}}{\bar{\varphi}'^{2}} = -\bar{q}(\bar{\varphi})\bar{\varphi}'^{2} + \bar{q}(t).$$

Subtracting and modifying these equations we get (by (4) and the proved part of Lemma 3):

$$A = \left| -\frac{1}{2} \left( \frac{\varphi'''}{\varphi'} - \frac{\overline{\varphi}'''}{\overline{\varphi}'} \right) + \frac{3}{4} \left( \frac{\varphi''^2}{\varphi'^2} - \frac{\overline{\varphi}''^2}{\overline{\varphi}'^2} \right) \right| =$$

$$= \left| q(t) - \overline{q}(t) - q(\varphi) \varphi'^2 + \overline{q}(\overline{\varphi}) \overline{\varphi}'^2 \right| =$$

$$= \left| (q(t) - \overline{q}(t)) - \overline{q}(\overline{\varphi}) (\varphi' - \overline{\varphi}') (\varphi' + \overline{\varphi}') - \right|$$

$$- \varphi'^2 \left[ (q(\varphi) - \overline{q}(\varphi)) + (\overline{q}(\varphi) - \overline{q}(\overline{\varphi})) \right] \leq \left| q(t) - \overline{q}(t) \right| +$$

$$+ \left| \overline{q}(\overline{\varphi}) (\varphi' - \overline{\varphi}') (\varphi' + \overline{\varphi}') \right| + \varphi'^2 \left| q(\varphi) - \overline{q}(\varphi) \right| +$$

$$+ \varphi'^2 \max_{x \in [t, \overline{\varphi}(t)]} \left| \overline{\varphi}(t) - t \right|_{t \to b^-} 0.$$

Taking into account Lemma 2 (for  $q \equiv \bar{q}$  we have  $\lim_{t \to b_{-}} \bar{\varphi}''(t) = \lim_{t \to b_{-}} \bar{\varphi}'''(t) = 0$ ) we can see from this that

(5) 
$$\lim_{t \to b_{-}} A \varphi'^{2} = \lim_{t \to b_{-}} \left| -\frac{1}{2} \varphi''' \cdot \varphi' + \frac{3}{4} \varphi''^{2} \right| = 0$$

holds. The relation (5) is the same as the relation (3) and therefore we can prove in the same way as in Lemma 1 that

$$\lim_{t\to b_-}\varphi''(t)=\lim_{t\to b_-}\varphi'''(t)=0.$$

So the statement of the lemma is proved.

**Theorem 2.** Let (q),  $(\overline{q})$  be oscillatory  $(t \to \infty)$  differential equations such that  $q \in C^0[a, \infty)$ ,  $\overline{q} \in C^1[a, \infty)$ ,  $\limsup_{t \to \infty} \overline{q}(t) < 0$ ,  $\lim_{t \to \infty} (q(t) - \overline{q}(t)) = 0$ ,  $\lim_{t \to \infty} \overline{q}'(t) = 0$ . Let  $\varphi$  be the dispersion of (q). Then

$$\lim_{t\to\infty}\varphi(t)=1\;,\quad \lim_{t\to\infty}\varphi''(t)=\lim_{t\to\infty}\varphi'''(t)=0\;.$$