

Werk

Label: Table of literature references

Jahr: 1975

PURL: https://resolver.sub.uni-goettingen.de/purl?31311157X_0100|log30

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen (2) There is an edge y = uu' of G such that neither u nor u' is adjacent to a vertex of degree 2. Without loss of generality we can assume that the vertex u is not a weak one. Thus G - u is not 2-connected and there is a vertex v such that the graph G - u - v is disconnected. It is easily seen that there exist subgraphs F_1 and F_2 of G such that $V(F_1) \cup V(F_2) = V(G)$, $V(F_1) \cap V(F_2) = \{u, v\}$, $3 \le |V(F_1)| \le |V(F_2)|$, $E(F_1) \cup E(F_2) = E(G)$, and $E(F_1) \cap E(F_2) = \emptyset$. As u is adjacent to no vertex of degree 2, $|V(F_1)| \ge 4$. Hence $|V(G)| \ge 6$.

Let $i \in \{1, 2\}$. We construct a graph G_i as follows: (a) if $\deg_{F_i} u = 1 = \deg_{F_i} v$, then $V(G_i) = V(F_i)$ and $E(G_i) = E(F_i) \cup \{uv\}$; (b) if either $\deg_{F_i} u > 1$ or $\deg_{F_i} v > 1$, then $V(G_i) = V(F_i) \cup \{w_i\}$ and $E(G_i) = E(F_i) \cup \{uw_i, vw_i\}$, where w_i is a vertex different from the vertices of F_i . Clearly, G_i is 2-connected. It is easily seen that for every vertex $t \in V(F_i)$, t is a weak vertex of G_i if and only if it is a weak vertex of G_i . This means that G_i contains no pair of adjacent weak vertices. As $1 \leq |V(G_i)| \leq 1$, $1 \leq i \leq 1$,

Fig. 1. Fig. 2.

Remark. As follows from Fig. 1, for every integer $p \ge 4$, there is a 2-connected graph of order p such that (i) it contains a pair of independent vertices of degree 2, (ii) it contains precisely two weak vertices, and (iii) the weak vertices are independent. As follows from Fig. 2, for every integer $p \ge 6$, there is a 2-connected graph of order p such that (i) it contains a pair of adjacent weak vertices, (ii) it contains precisely two vertices of degree 2, and (iii) the vertices of degree 2 are adjacent.

Reference

[1] M. Behzad and G. Chartrand: Introduction to the Theory of Graphs. Allyn and Bacon, Inc., Boston 1971.

Author's address: 116 38 Praha 1, nám. Krasnoarmějců 2 (Filosofická fakulta Karlovy university).