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ON L’-SOLUTIONS OF THE DIFFERENTIAL EQUATION
y" = q(t)y

MIrosLAV BARTUSEK, Brno

(Received September 3, 1973)

1.1. Consider a differential equation '
(a) v =4q()y, qeCa,b), b=, g(t)<0, te[a,b)

where C"[a, b) (n being a non-negative integer) is the set of all continuous functions
having continuous derivatives up to and including the order n on [a, b).

Let y, be a non-trivial solution of (¢) vanishing at t € [a, b) and y, a non-trivial
one the derivative of which vanishes at t. If ¢(¢), ¥(t), x(t), w(t) is the first zero respec-
tively of y,, y3, ¥1, ¥, lying to the right from ¢, then ¢, {, x, o is called the basic
central dispersion of the 1-st, 2-nd, 3-rd, 4-th kind, respectively (brieﬁy, dispersion
of the 1-st, 2-nd, 3-rd, 4-th kind).

Throughout the paper we shall deal with oscillatory (¢t — b_) differential equations
(i.e., every non-trivial solution has infinitely many zeros on every interval of the form

[to, b), to €[a, b)).
Let 6 be the dispersion of the k-th kind, k = 1, 2, 3, 4. Then § has the following
properties (see [4] § 13)

(1) 1) 6eCla,b) if k=1
6eC'a,b) if k=23 or 4
2) o) >t on [a,b)
3) ¥()>0 on [a,b)
4) limd(r) =b.

t—b_

Let n be a positive integer. If §, is the n-th iteration of the dispersion é of the k-th
kind, then 6, has the same properties (1), see [4] § 13.
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We shall need also some other properties of dispersions. Let y be a non-trivial
solution of (q) and let ¢,, Y, be the n-th iteration of the dispersion ¢, ¥ of the 1-st
or 2-nd kind, respectively. Then we have (see [4] § 13):

) out) = y(eu(1)ly*())  for y(t) +0
= y(Oye0)  for (i) =0

(9 Y1) —_—
40! O OREZ0 for y'(t) +0

a0 YO oy =o0.

R ORRZ0)

1.2. First we summarize the results that we shall need in the sequel. See [1], [6],
[2] (Theorems 5, 9, 10).

Theorem 1. Let (q), g € C°[a, b), q(t) < 0, te[a, b) be an oscillatory (t > b_)
differential equation and ¢,(y,) the n-th iteration of its dispersion ¢ (Y) of the
first (second) kind. Let t, € [a, b).

a) Every solution of (q) is bounded on [to, b) if and only if a constant N exists
such that

ei(x) SN, xe[to, 0(t)), n=1273,...

b) Every solution of (q) belongs to I’[t,, b), p > 0 if and only if

@ ¢(to)
Y [en(®]' 72 dt < o
n=0 Jto

holds.

c) If q is non-increasing (non-decreasing), then

40 <51 ()2 1), tefab)
q() — -
holds where & is the dispersion of the k-th kind of (q), k = 1, 2.

d) Let 0 > g(f) = const > —oo. If there exists a solution y of (q) tending to
zero for t — b_, then every solution of (q) linearly independent of y is unbounded
on [a,b).

e) Let 0 > const. = q(t) > —o0. If there exists a solution y of (q) the derivative
of which tends to zerot —» b_, then the derivative of every solution of (q) linearly
independent of y is unbounded on [a, b)

f) Consider the following assertions on [a, b):

A) The sequence of absolute values of local extremes of (the derivative of)
an arbitrary solution of (q) is non-increasing.
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B) The sequence of absolute values of local extremes of the derivative of an
arbitrary solution (of an arbitrary solution) is non-decreasing.

C) a(¥ (1) Y'(f) 2 1 (¢(t) — t is non-decreasing).
q(1)

D) o¢(f) — t is non-increasing (‘I(L(g)) Y'(7) £ 1).
q
Then A <> C = D <> B holds.

2. This paragraph deals with the relation of the dispersions of the 1-st and 2-nd
kind of (q) and the property of every solution (of the derivative of every solution)
of (q) to belong to If[a, b), p > 0. Theorem 1b) gives the necessary and sufficient
condition for every solution to belong to I”[a, b), p > 0. The situation for the deriva-
tive of an arbitrary solution is described by the following

Theorem 2. Let (q), g€ C%a, b), q(t) <0, te[a,b) be oscillatory on [a, b)
and let s, be the n-th iteration of the dispersion  of the 2-nd kind. Then the deriva-
tive of every solution of (q) belongs to I/[a, b), p > 0 if and only if

@ ¥(a)
@ 5 [l @ vy ar < o

holds.

Proof. Let the condition (4) be satisfied. According to (3) we have for an arbitrary
solution y .

b 0 (Yn+1(a) o (Y(a)
[bora-£ [ bora -3 [“wrna -

. ="§0 :l(a)iﬁ;.l +p/2 (Iy!(t)lz ';Iq(?:gfl)l’/zdt < Mi '[ |q('l’ (t))!p/z :1+pl2 dt < oo

where
p/2

yll(t)

q(r)

We can see that y’ belongs to I?[a, b), p > 0. Let )’ belong to I’[a, (b), p > 0 for

an arbitrary solution y. Let y,, y, be two linearly independent solutions of (q) such

that yj # O on [a, t,], y5 # 0 on [t,, ¥(a)], t, = (a + ¥(a))/2. Then

yl('pn
yi(®)

Yz(‘l’n) |q(,)|p/2 v dt] <M,. (I lyllpd’ +I|y2|P dt) < ®©

M = max
te[a,y(a)]

@

% J el vt g = i U “

n=0 a

v(a)
+ J
ty

|q(t)|"/2 Yl dt +

ya()
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where

ﬂ p/2

yi()

and we can see that the condition (4) is satisfied.

)

M, = max(max =
- y%(1)

te[a,ty]

pIZ)

Lemma 1. Let (q), g € C°[a, b), q(f) < 0, t € [a, b) be oscillatory on [a, b) and let y
be an arbitrary solution. Let @,, V,, X., ®, be the n-th iteration of the dispersion
@, ¥, x, © of the 1-st, 2-nd, 3-rd, 4-th kind, respectively. Let to, t, € [a, b), y(t,) = 0,
y'(t)) =0.

a) The solution y belongs to I’[a, b), p > 0 ij and only if

telty,¥(a)]

(5) . 2 [y 1)) (9ne1ta) = @ulto)) < w0
holds.
b) The derivative of y belongs to I’[a, b), p > 0 if and only if

(6) Zoly'(w,,ﬂ(tl))]’ (Une1(ts) = ¥a(t1)) < o0
holds.
Proof. a) Let y belong to I*[a, b), p > 0. Then

13 Dl () (et = 04(to) =
=517 - ooy Mol

@n(t0) Xn+1(t0) = @a(to)
@n+1(f0) P ©  (@n+1(to)
4 I (t=0p(te) — 10 dt] =¥ (7 dt < o
n+1(t0) Xn+1(t0) = @nr1(to) n=0 J gu(to)

(because |y|” has not smaller values on the interval [@,(o), %n+1(fo)] of 00 [£4+1(to),
@n+1(to)] than the function the graph of which is the line segment connecting the
points (@4(to), [¥(@a(to))|?) and (xas1(to)s [¥(Xas1(t0))I?) OF (tas1(t0)s [Y(tas1(t0))]")
and (@n+1(to)s [¥(@n+1(t0))|?), respectively. Thus we can see that (5) is valid.

Let (5) be valid. Then

Jb|y(t)|' dt =M + i "

+1

(to) 0 @n +1(t0)
(O de< M+ 3 (s 1(t))” dt =

1=0 J on(to) n=0 J gn(to)

: <] : to
=M+ 3 5t sto) (uste) = o) < 0, 1 = [ ol
and the theorem is poved in this case.
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b) The statement for y’ can be proved in the same way. We only use ¥, @ instead
of @, %.

Theorem 3. Let (q), g € C°[a, ), q(t) < 0, t€[a, ) be oscillatory on [a, ),
g monotone.

a) If there exists a solution y belonging to I’[a, ), p > 0, then lim y(t) = 0.
t— 00

b) If every solution belongs to I[a, ), p > 0, then every solution converges
to zero for t > o and lim ¢(f) = — 0.

t— 00

c) If there exists a solution y such that y' belongs to I![a, «), p > 0, then y'
converges to zero for t — 0.

d) If the derivative of every solution belongs to I’[a, o), p > 0, then hm g(r) =0
and the derivative of every solution tends to zero for t — co.

Proof. a) Let y be a non-trivial solution of (q) such that y € I’[a, ), p > 0.
Let t, € [a, ), ¥(t,) = 0. According to Theorem 1c)f) the sequence of absolute
values of local extremes of y is monotone. Hence lim |y(x,(to))| = M = 0 where y,

is the n-th iteration of the dispersion y of the 3-rd kind of (q). If M = 0, then
lim y(t) = 0. If M =+ 0, then there exists a constant M such that |y(x.(t,))| = M, >

t—=>w

> 0,n =1,2,... and according to Lemma 1 we have

T 1t ()P (@re1(t0) = 94(10)) 2 M1 T (@us(t0) = 04fte) =

However, this contradicts our assumption.

c) This case can be proved in the same way as a).

b) d) The statement follows from a) c) and Theorem 1d) €).

Remark 1. A result of Bellman [3] § 6.8 concerns problems of this paragraph.

Let a € C°[ty, @), b e C°[t,, ), |b(f)| < const. < oo for t & [t,, ). Let p > 1
be a number and p’ = p/(p — 1). If every solution of y" = a(r) y belongs to I?[t,, c)
and IP'[to, o), then every solution of y” = (a(f) + b()) y has the same property.

For p = 2 the statement lim q(f) = —oo from Theorem 3b) follows from this

t— o0

result by indirect proof: Let lim g(f) = —C > —co. Put a(r) = g(t), b(t) = —1 — q(2).

t—

Then every solution of y” = —y belongs to I*[t,, c0) but this is not true.

3. In the last paragraph we shall prove some new results concerning the existence
of integral (% y(f) dt where y is a non-trivial solution of (q).
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Lemma 2. Let (q), q € C°[a, b) be oscillatory on [a, b) and let y be its solution.
Let ¢, be the n-th iteration of zts dispersion ¢ of the 1-st kind.
Let ty € [a, b). Then’

) [y =Er [ ar

Proof. According to (2) we have

@n +1(t0)

f : () dt = i y(1) de =,§o f :P (w)y(‘/’n(’)) oy(1) dt =

@n(to)
_4’
= S0 o ) a
n=0 to
and thus the stament is valid.

Theorem 4. Let (q), g€ C°[a, b), b < o0 be a differential equation, q non-
increasing, lim g(t) = — 0. Let y be an arbitrary solution of (q). Then

- J-:y(t) dt

Proof. As lim g(f) = —oo, the equation (q) is oscillatory on [a, b). Let y be

t=b—
a non trivial solution of (q). Let t, €[a, b), ¥(t;) =0, q(t) <0, te[ty, b). As
¢' < 1o0n [t,, b) (see Theorem 1c)) we have

@(t0)
I @2 y(1) dt'

to

®)

holds.

= M, = const. < o

.G’(‘o)
J en—() y(1)dt|, n=2,3,...
to

and according to the alternating series test the infinite series in (7) converges if and
only if

¢(to)
©) lifn I 02(1) y(t) dt = 0
to

n—oo

holds. Hence (% y(t) dt converges iff the condition (9) is valid.
Let ¢ < 0 be a number. As lim g(f) = — oo, there exists a number t,, t, € [a, b)
t=b— i
such that () < ¢, t € [, b). Then the Sturm Comparison Theorem for the equations
(q) and y” =c.y implies 0 < ¢(t) — t < n/\/—c. Thus lim (¢(t) — £) = 0. Ac-
t—b-

cording to Theorem 1a) c) an arbitrary solution of (q) is bounded on [a, b) and
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