

## Werk

Label: Article **Jahr:** 1975

**PURL:** https://resolver.sub.uni-goettingen.de/purl?31311157X\_0100|log27

#### **Kontakt/Contact**

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

### ČASOPIS PRO PĚSTOVÁNÍ MATEMATIKY

Vydává Matematický ústav ČSAV, Praha
SVAZEK 100 \* PRAHA 16. 5. 1975 \* ČÍSLO 2

# ON L<sup>p</sup>-SOLUTIONS OF THE DIFFERENTIAL EQUATION y'' = q(t)y

MIROSLAV BARTUŠEK, Brno (Received September 3, 1973)

#### 1.1. Consider a differential equation

(q) 
$$y'' = q(t) y$$
,  $q \in C^0[a, b)$ ,  $b \le \infty$ ,  $q(t) < 0$ ,  $t \in [a, b)$ 

where  $C^n[a, b)$  (n being a non-negative integer) is the set of all continuous functions having continuous derivatives up to and including the order n on [a, b).

Let  $y_1$  be a non-trivial solution of (q) vanishing at  $t \in [a, b)$  and  $y_2$  a non-trivial one the derivative of which vanishes at t. If  $\varphi(t)$ ,  $\psi(t)$ ,  $\chi(t)$ ,  $\omega(t)$  is the first zero respectively of  $y_1$ ,  $y_2$ ,  $y_1$ ,  $y_2$  lying to the right from t, then  $\varphi$ ,  $\psi$ ,  $\chi$ ,  $\omega$  is called the basic central dispersion of the 1-st, 2-nd, 3-rd, 4-th kind, respectively (briefly, dispersion of the 1-st, 2-nd, 3-rd, 4-th kind).

Throughout the paper we shall deal with oscillatory  $(t \to b_-)$  differential equations (i.e., every non-trivial solution has infinitely many zeros on every interval of the form  $[t_0, b), t_0 \in [a, b)$ ).

Let  $\delta$  be the dispersion of the k-th kind, k = 1, 2, 3, 4. Then  $\delta$  has the following properties (see [4] § 13)

(1) 
$$\delta \in C^{3}[a, b) \text{ if } k = 1$$

$$\delta \in C^{1}[a, b) \text{ if } k = 2, 3 \text{ or } 4$$
2) 
$$\delta(t) > t \text{ on } [a, b)$$
3) 
$$\delta'(t) > 0 \text{ on } [a, b)$$
4) 
$$\lim_{t \to b_{-}} \delta(t) = b.$$

Let *n* be a positive integer. If  $\delta_n$  is the *n*-th iteration of the dispersion  $\delta$  of the *k*-th kind, then  $\delta_n$  has the same properties (1), see [4] § 13.

We shall need also some other properties of dispersions. Let y be a non-trivial solution of (q) and let  $\varphi_n$ ,  $\psi_n$  be the *n*-th iteration of the dispersion  $\varphi$ ,  $\psi$  of the 1-st or 2-nd kind, respectively. Then we have (see [4] § 13):

(2) 
$$\varphi'_{n}(t) = y^{2}(\varphi_{n}(t))/y^{2}(t) \quad \text{for } y(t) \neq 0$$

$$= y'^{2}(t)/y'^{2}(\varphi_{n}(t)) \quad \text{for } y(t) = 0$$

$$\psi'_{n}(t) = \frac{q(t)}{q(\psi_{n}(t))} \cdot \frac{y'^{2}(\psi_{n}(t))}{y'^{2}(t)} \quad \text{for } y'(t) \neq 0$$

$$= \frac{q(t)}{q(\psi_{n}(t))} \cdot \frac{y^{2}(t)}{y^{2}(\psi_{n}(t))} \quad \text{for } y'(t) = 0 .$$

1.2. First we summarize the results that we shall need in the sequel. See [1], [6], [2] (Theorems 5, 9, 10).

**Theorem 1.** Let (q),  $q \in C^0[a, b)$ , q(t) < 0,  $t \in [a, b)$  be an oscillatory  $(t \to b_-)$  differential equation and  $\varphi_n(\psi_n)$  the n-th iteration of its dispersion  $\varphi(\psi)$  of the first (second) kind. Let  $t_0 \in [a, b)$ .

a) Every solution of (q) is bounded on  $[t_0, b)$  if and only if a constant N exists such that

$$\varphi'_n(x) \leq N$$
,  $x \in [t_0, \varphi(t_0))$ ,  $n = 1, 2, 3, \dots$ 

b) Every solution of (q) belongs to  $L^p[t_0, b)$ , p > 0 if and only if

$$\sum_{n=0}^{\infty} \int_{t_0}^{\varphi(t_0)} [\varphi'_n(t)]^{1+p/2} \, \mathrm{d}t < \infty$$

holds.

c) If q is non-increasing (non-decreasing), then

$$\frac{q(t)}{q(\delta(t))} \leq \delta'(t) \leq 1 \quad (\delta'(t) \geq 1), \quad t \in [a, b)$$

holds where  $\delta$  is the dispersion of the k-th kind of (q), k = 1, 2.

- d) Let  $0 > q(t) \ge \text{const} > -\infty$ . If there exists a solution y of (q) tending to zero for  $t \to b_-$ , then every solution of (q) linearly independent of y is unbounded on [a, b).
- e) Let  $0 > \text{const.} \ge q(t) > -\infty$ . If there exists a solution y of (q) the derivative of which tends to zero  $t \to b_-$ , then the derivative of every solution of (q) linearly independent of y is unbounded on  $\lceil a, b \rceil$ .
  - f) Consider the following assertions on [a, b]:
    - A) The sequence of absolute values of local extremes of (the derivative of) an arbitrary solution of (q) is non-increasing.

B) The sequence of absolute values of local extremes of the derivative of an arbitrary solution (of an arbitrary solution) is non-decreasing.

C) 
$$\frac{q(\psi(t))}{q(t)} \psi'(t) \ge 1 \ (\varphi(t) - t \text{ is non-decreasing}).$$

D) 
$$\varphi(t) - t$$
 is non-increasing  $\left(\frac{q(\psi(t))}{q(t)}\psi'(t) \le 1\right)$ .

Then  $A \Leftrightarrow C \Rightarrow D \Leftrightarrow B$  holds.

2. This paragraph deals with the relation of the dispersions of the 1-st and 2-nd kind of (q) and the property of every solution (of the derivative of every solution) of (q) to belong to  $L^p[a, b)$ , p > 0. Theorem 1b) gives the necessary and sufficient condition for every solution to belong to  $L^p[a, b)$ , p > 0. The situation for the derivative of an arbitrary solution is described by the following

**Theorem 2.** Let (q),  $q \in C^0[a, b)$ , q(t) < 0,  $t \in [a, b)$  be oscillatory on [a, b) and let  $\psi_n$  be the n-th iteration of the dispersion  $\psi$  of the 2-nd kind. Then the derivative of every solution of (q) belongs to  $L^p[a, b)$ , p > 0 if and only if

(4) 
$$\sum_{n=0}^{\infty} \int_{a}^{\psi(a)} |q(\psi_{n}(t))|^{p/2} \psi'_{n}(t)^{1+p/2} dt < \infty$$

holds.

Proof. Let the condition (4) be satisfied. According to (3) we have for an arbitrary solution y

$$\int_{a}^{b} |y'(t)|^{p} dt = \sum_{n=0}^{\infty} \int_{\psi_{n}(a)}^{\psi_{n+1}(a)} |y'(t)|^{p} dt = \sum_{n=0}^{\infty} \int_{a}^{\psi(a)} |y'(\psi_{n})|^{p} \psi'_{n} dt =$$

$$= \sum_{n=0}^{\infty} \int_{a}^{\psi(a)} \psi'_{n}^{1+p/2} \left( |y'(t)|^{2} \frac{|q(\psi_{n})|}{|q(t)|} \right)^{p/2} dt \le M \sum_{n=0}^{\infty} \int_{a}^{\psi(a)} |q(\psi_{n}(t))|^{p/2} \psi'_{n}^{1+p/2} dt < \infty$$

where

$$M = \max_{t \in [a,\psi(a)]} \left| \frac{y^{\prime 2}(t)}{q(t)} \right|^{p/2}.$$

We can see that y' belongs to  $L^p[a, b)$ , p > 0. Let y' belong to  $L^p[a, (b), p > 0$  for an arbitrary solution y. Let  $y_1, y_2$  be two linearly independent solutions of (q) such that  $y_1' \neq 0$  on  $[a, t_1]$ ,  $y_2' \neq 0$  on  $[t_1, \psi(a)]$ ,  $t_1 = (a + \psi(a))/2$ . Then

$$\sum_{n=0}^{\infty} \int_{a}^{\psi(a)} |q(\psi_{n})|^{p/2} \psi_{n}^{\prime 1+p/2} dt = \sum_{n=0}^{\infty} \left[ \int_{a}^{t_{1}} \left| \frac{y_{1}^{\prime}(\psi_{n})}{y_{1}^{\prime}(t)} \right|^{p} |q(t)|^{p/2} \psi_{n}^{\prime} dt + \int_{t_{1}}^{\psi(a)} \left| \frac{y_{2}^{\prime}(\psi_{n})}{y_{2}^{\prime}(t)} \right|^{p} \cdot |q(t)|^{p/2} \psi_{n}^{\prime} dt \right] \leq M_{1} \cdot \left( \int_{a}^{b} |y_{1}^{\prime}|^{p} dt + \int_{a}^{b} |y_{2}^{\prime}|^{p} dt \right) < \infty$$

where

$$M_{1} = \max \left( \max_{t \in [a,t_{1}]} \left| \frac{q(t)}{y_{1}^{\prime 2}(t)} \right|^{p/2}, \quad \max_{t \in [t_{1},\psi(a)]} \left| \frac{q(t)}{y_{2}^{\prime 2}(t)} \right|^{p/2} \right)$$

and we can see that the condition (4) is satisfied.

**Lemma 1.** Let (q),  $q \in C^0[a, b)$ , q(t) < 0,  $t \in [a, b)$  be oscillatory on [a, b) and let y be an arbitrary solution. Let  $\varphi_n$ ,  $\psi_n$ ,  $\chi_n$ ,  $\omega_n$  be the n-th iteration of the dispersion  $\varphi$ ,  $\psi$ ,  $\chi$ ,  $\omega$  of the 1-st, 2-nd, 3-rd, 4-th kind, respectively. Let  $t_0$ ,  $t_1 \in [a, b)$ ,  $y(t_0) = 0$ ,  $y'(t_1) = 0$ .

a) The solution y belongs to  $L^p[a, b)$ , p > 0 ij and only if

(5) 
$$\sum_{n=0}^{\infty} |y(\chi_{n+1}(t_0))|^p \left(\varphi_{n+1}(t_0) - \varphi_n(t_0)\right) < \infty$$

holds.

b) The derivative of y belongs to  $L^p[a, b)$ , p > 0 if and only if

(6) 
$$\sum_{n=0}^{\infty} |y'(\omega_{n+1}(t_1))|^p (\psi_{n+1}(t_1) - \psi_n(t_1)) < \infty$$

holds.

Proof. a) Let y belong to  $L^p[a, b)$ , p > 0. Then

$$\frac{1}{2} \sum_{n=0}^{\infty} |y(\chi_{n+1}(t_0))|^p \left(\varphi_{n+1}(t_0) - \varphi_n(t_0)\right) = \\
= \sum_{n=0}^{\infty} \left[ \int_{\varphi_n(t_0)}^{\chi_{n+1}(t_0)} (t - \varphi_n(t_0)) \frac{|y(\chi_{n+1}(t_0))|^p}{\chi_{n+1}(t_0) - \varphi_n(t_0)} dt + \\
+ \int_{\chi_{n+1}(t_0)}^{\varphi_{n+1}(t_0)} (t - \varphi_{n+1}(t_0)) \frac{|y(\chi_{n+1}(t_0))|^p}{\chi_{n+1}(t_0) - \varphi_{n+1}(t_0)} dt \right] \leq \sum_{n=0}^{\infty} \int_{\varphi_n(t_0)}^{\varphi_{n+1}(t_0)} |y(t)|^p dt < \infty$$

(because  $|y|^p$  has not smaller values on the interval  $[\varphi_n(t_0), \chi_{n+1}(t_0)]$  or on  $[\chi_{n+1}(t_0), \varphi_{n+1}(t_0)]$  than the function the graph of which is the line segment connecting the points  $(\varphi_n(t_0), |y(\varphi_n(t_0))|^p)$  and  $(\chi_{n+1}(t_0), |y(\chi_{n+1}(t_0))|^p)$  or  $(\chi_{n+1}(t_0), |y(\chi_{n+1}(t_0))|^p)$  and  $(\varphi_{n+1}(t_0), |y(\varphi_{n+1}(t_0))|^p)$ , respectively. Thus we can see that (5) is valid.

Let (5) be valid. Then

$$\int_{a}^{b} |y(t)|^{p} dt = M + \sum_{n=0}^{\infty} \int_{\varphi_{n}(t_{0})}^{\varphi_{n+1}(t_{0})} |y(t)|^{p} dt \leq M + \sum_{n=0}^{\infty} \int_{\varphi_{n}(t_{0})}^{\varphi_{n+1}(t_{0})} |y(\chi_{n+1}(t_{0}))|^{p} dt =$$

$$= M + \sum_{n=0}^{\infty} |y(\chi_{n+1}(t_{0}))|^{p} (\varphi_{n+1}(t_{0}) - \varphi_{n}(t_{0})) < \infty, \quad M = \int_{a}^{t_{0}} |y(t)|^{p} dt$$

and the theorem is poved in this case.

b) The statement for y' can be proved in the same way. We only use  $\psi$ ,  $\omega$  instead of  $\varphi$ ,  $\chi$ .

**Theorem 3.** Let (q),  $q \in C^0[a, \infty)$ , q(t) < 0,  $t \in [a, \infty)$  be oscillatory on  $[a, \infty)$ , q monotone.

- a) If there exists a solution y belonging to  $L^p[a, \infty)$ , p > 0, then  $\lim_{t \to \infty} y(t) = 0$ .
- b) If every solution belongs to  $L^p[a, \infty)$ , p > 0, then every solution converges to zero for  $t \to \infty$  and  $\lim_{t \to \infty} q(t) = -\infty$ .
- c) If there exists a solution y such that y' belongs to  $L^p[a, \infty)$ , p > 0, then y' converges to zero for  $t \to \infty$ .
- d) If the derivative of every solution belongs to  $L^p[a, \infty)$ , p > 0, then  $\lim_{t \to \infty} q(t) = 0$  and the derivative of every solution tends to zero for  $t \to \infty$ .

Proof. a) Let y be a non-trivial solution of (q) such that  $y \in L^p[a, \infty)$ , p > 0. Let  $t_0 \in [a, \infty)$ ,  $y(t_0) = 0$ . According to Theorem 1c) f) the sequence of absolute values of local extremes of y is monotone. Hence  $\lim_{n \to \infty} |y(\chi_n(t_0))| = M \ge 0$  where  $\chi_n(t_0)$ 

is the *n*-th iteration of the dispersion  $\chi$  of the 3-rd kind of (q). If M=0, then  $\lim_{t\to\infty} y(t)=0$ . If  $M\neq 0$ , then there exists a constant  $M_1$  such that  $|y(\chi_n(t_0))|\geq M_1>t\to\infty$ 

> 0, n = 1, 2, ... and according to Lemma 1 we have

$$\sum_{n=0}^{\infty} |y(\chi_{n+1}(t_0))|^p \left(\varphi_{n+1}(t_0) - \varphi_n(t_0)\right) \ge M_1 \sum_{n=0}^{\infty} (\varphi_{n+1}(t_0) - \varphi_n(t_0)) = \infty.$$

However, this contradicts our assumption.

- c) This case can be proved in the same way as a).
- b) d) The statement follows from a) c) and Theorem 1d) e).

Remark 1. A result of Bellman [3] § 6.8 concerns problems of this paragraph.

Let  $a \in C^0[t_0, \infty)$ ,  $b \in C^0[t_0, \infty)$ ,  $|b(t)| \le \text{const.} < \infty$  for  $t \in [t_0, \infty)$ . Let p > 1 be a number and p' = p/(p-1). If every solution of y'' = a(t) y belongs to  $L^p[t_0, \infty)$  and  $L^p[t_0, \infty)$ , then every solution of y'' = (a(t) + b(t)) y has the same property.

For p=2 the statement  $\lim_{t\to\infty}q(t)=-\infty$  from Theorem 3b) follows from this

result by indirect proof: Let  $\lim_{t\to\infty} q(t) = -C > -\infty$ . Put a(t) = q(t), b(t) = -1 - q(t). Then every solution of y'' = -y belongs to  $L^2[t_0, \infty)$  but this is not true.

2. In the last manager, how shall make some many results as a series the oxion

3. In the last paragraph we shall prove some new results concerning the existence of integral  $\int_a^b y(t) dt$  where y is a non-trivial solution of (q).

**Lemma 2.** Let (q),  $q \in C^0[a, b)$  be oscillatory on [a, b) and let y be its solution. Let  $\varphi_n$  be the n-th iteration of its dispersion  $\varphi$  of the 1-st kind. Let  $t_0 \in [a, b)$ . Then

(7) 
$$\int_{t_0}^b y(t) dt = \sum_{n=0}^{\infty} (-1)^n \int_{t_0}^{\varphi(t_0)} \varphi_n^{\prime 3/2} y(t) dt.$$

Proof. According to (2) we have

$$\int_{t_0}^b y(t) dt = \sum_{n=0}^\infty \int_{\varphi_n(t_0)}^{\varphi_{n+1}(t_0)} y(t) dt = \sum_{n=0}^\infty \int_{t_0}^{\varphi(t_0)} y(\varphi_n(t)) \varphi'_n(t) dt =$$

$$= \sum_{n=0}^\infty (-1)^n \int_{t_0}^{\varphi(t_0)} {\varphi'_n}^{3/2}(t) y(t) dt$$

and thus the stament is valid.

**Theorem 4.** Let (q),  $q \in C^0[a, b)$ ,  $b < \infty$  be a differential equation, q non-increasing,  $\lim_{t \to b^-} q(t) = -\infty$ . Let y be an arbitrary solution of (q). Then

(8) 
$$\left| \int_{a}^{b} y(t) \, \mathrm{d}t \right| = M_{y} = \text{const.} < \infty$$

holds.

Proof. As  $\lim_{t\to b^-} q(t) = -\infty$ , the equation (q) is oscillatory on [a, b). Let y be a non trivial solution of (q). Let  $t_0 \in [a, b)$ ,  $y(t_0) = 0$ , q(t) < 0,  $t \in [t_0, b)$ . As  $\varphi' \le 1$  on  $[t_0, b)$  (see Theorem 1c)) we have

$$\left| \int_{t_0}^{\varphi(t_0)} \varphi_n'^{3/2} y(t) dt \right| \leq \left| \int_{t_0}^{\varphi(t_0)} \varphi_{n-1}'(t) y(t) dt \right|, \quad n = 2, 3, \dots$$

and according to the alternating series test the infinite series in (7) converges if and only if

(9) 
$$\lim_{n \to \infty} \int_{t_0}^{\varphi(t_0)} \varphi_n'^{3/2}(t) y(t) dt = 0$$

holds. Hence  $\int_a^b y(t) dt$  converges iff the condition (9) is valid.

Let c < 0 be a number. As  $\lim_{t \to b^-} q(t) = -\infty$ , there exists a number  $t_1, t_1 \in [a, b)$  such that  $q(t) < c, t \in [t_1, b)$ . Then the Sturm Comparison Theorem for the equations (q) and  $y'' = c \cdot y$  implies  $0 < \varphi(t) - t \le \pi/\sqrt{-c}$ . Thus  $\lim_{t \to b^-} (\varphi(t) - t) = 0$ . According to Theorem 1a) c) an arbitrary solution of (q) is bounded on [a, b) and