

Werk

Label: Table of literature references

Jahr: 1975

PURL: https://resolver.sub.uni-goettingen.de/purl?31311157X_0100|log16

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

Proof. It is clear that it suffices to prove that the function $t \to \mathcal{F}(t,0)$ x is almost periodic for $x \in B$. For any $t \in R$ the operator $\mathcal{F}(t,0)$ has the form $\mathcal{F}(t,0) = T(\overline{A_0},t)$ $T(\overline{C(t)},1)$. The function $t \to T(\overline{A_0},t)$ x is almost periodic for $x \in B$ which implies that there exists a constant $k_1 < \infty$ such that $|T(\overline{A_0},t)| \le k_1$ for $t \in R$. If we prove that the function $t \to T(\overline{C(t)},1)$ x is almost periodic for $x \in B$, then the almost periodicity of the function $t \to \mathcal{F}(t,0)$ x for $x \in B$ will follow from the well known theorem about the almost periodicity of composed function. Since the operators $T(\overline{C(t)},1)$ are uniformly bounded $(|T(\overline{C(t)},1)| \le e^{\omega_2}$ for $t \in R$), it suffices to prove that the function $t \to T(\overline{C(t)},1)$ x is almost periodic for $x \in D(A)$. Let $x \in D(A)$. Then we have for $t, s \in R$ $T(\overline{C(t)},1)$ $x \to T(\overline{C(s)},1)$ $x \to T(\overline{C(s)},1)$. This implies that there exists a constant $k_2 = k_2(\omega_2)$ such that $|T(\overline{C(t)},1)| x \to T(\overline{C(t)},1)$ $x \to T(\overline{C(t)}$

Note. Let \overline{A}_0 be such a G-operator in a weakly complete Banach space B that $T(\overline{A}_0)$ is a bounded group of operators, i.e. $|T(\overline{A}_0, t)| \leq k < \infty$ for $t \in R$. Moreover, let $\sigma(\overline{A}_0) = C \setminus \varrho(\overline{A}_0)$ be at most countable. Then it follows from Theorem 1 of [3] and from Theorem 3 of [4] that the assumption 3 of Theorem 2 is fulfilled, i.e., the function $t \to T(\overline{A}_0, t) x$ is almost periodic for any $x \in B$.

Bibliography

- [1] Yosida K.: Functional analysis (Springer 1965).
- [2] Amerio L., Prouse G.: Almost periodic functions and functional equations (Van Nostrand, New York 1971).
- [3] $\mathit{Любич}$ Ю. И.: Об условиях полноты собственных векторов корректного оператора (Успехи мат. наук XVII (1963), 165—171).
- [4] Lovicar V.: Weakly almost periodic solutions of linear equations in Banach spaces (Čas. pěst. mat. 98 (1973), pp 126-129).

Author's address: 115 67 Praha 1, Žitná 25 (Matematický ústav ČSAV).