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INTRODUCTION

There are many ways in which the measurability of real-valued functions can be
defined. Some of them can be adopted for functions with values in a partially ordered
set but then cease to be equivalent. In the present paper we discuss several types of
measurability of such functions, study their interrelations and also the mathematical
structure of some of such classes of functions under certain additional conditions on
the image space Y, e.g. if Yis a linear space or a lattice.

1. NOTATION AND NOTIONS

Throughout the paper, & will denote a g-algebra of subsets of an abstract set
X € & and Y will be a set partially ordered by < which is a binary relation satisfying

(u;) (VaeY)a<a
(uy) (Va,b,ceY)((asbAab=<c)=a=c)
(u3) (Va,beY)((a <b A b<a)=>a=b)

We shall use the notation a < b iff a < b and a + b. Given a €Y, symbols
[y 4], [y 2 a], [y < a] and [y > a] will denote the sets {y eY; y < a}, {yeY;
y2a},{yeY;y<a}and {yeY; y > a}, respectively.

In some results, Y will be assumed to be a partially ordered linear space, that is,
areal linear space with a partial ordering < satisfying, besides (u,), (u,) and (u;), also
(vi) (Va,b,ceY)(a<b=a+c<b+c)

(v2) (Va,beY)(VteR)((t > 0 A a < b) = ta < tb)

where R denotes the field of reals.
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We shall also consider the order topology % on Y whose subbasis consists of all
sets [y < a] and [y > a], for aeY. The topology ¥ enables us to define dense
subsets of Y and to declare Y separable iff there is a countable dense subset of Y.

We say that a partially ordered set Yis conditionally o-complete iff every countable
set Z = Y bounded from above by some b e Y (i.e. (Vy € Z) y < b) has a supremum.

If f is a function defined on X with values in Yand M is a subset of Y, then by f "M
we shall denote the set {x € X; f(x) € M}.

Generalizing the concepts introduced in [1] and [2]*) we define the classes of
upper, lower and weakly measurable functions respectively as

Mo={f:X>Y, VaeY)f [y <a]e&}
My ={f:X>Y, VaeY)f [y >a]es}
M, =M .M .

Analogously we define classes .#_, .# . and 4, of which the last two in the
case of a linearly ordered Y coincide with .# . and . . respectively. We put # =
=M M.

Interpreting the family of Borel sets in Y as the o-algebra o(%) generated by the
order topology ¥4 we may introduce Borel measurable functions as those in & =
={f:X->Y, (VGe¥) f'Ge¥}.

In order to define yet some other types of measurability we need the notion of
simple function. A function f : X — Yis called simple iff its range is a finite set F = Y
and for every y € Y we have f ~*{y} € &. The collection of all simple functions f : X —
— Y will be denoted by #.

If fand f, (n = 1,2, ...) are functions from X into Y, we write f, 7 f (f, \ f)
iff for every xe€X we have fy(x) < fo41(x) (fi(%) 2 fu+1(x)), n=1,2,... and
f(x) = sup, f(x) (f(x) = inf, f,(x)). Now define

M,={f:X-Y; (Bf" simple, n = i, 2,..)fu 2 [}
M ={f:X->Y; (3f,simple,n = 1,2,...)f, ~ f}.

The functions in M, = M , N M Will be called strongly measurable.
It is easy to observe that any class of Y-valued functions is partially ordered, if we

put f < g iff (Vx e X) f(x) < g(x).
2. GENERAL RESULTS

Theorem 2.1. For any partially ordered set Y we have
M=M,N M.

*) See also [3], part 1, exam;;le 2.
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Proof. Let fe# = Mo N M;. Then f7 [y <a]=f"'[y<a]\Nf[y2
2 a] €, hence fe .. Since analogously fe .#., we infer fe .#,. To prove
fe M _ we realize that f"'{a} = f~'[y S a] nf [y 2 a].

For the converse inclusion, let fe #, N #_. Thenf™ [y < a] = f [y <a] v
uf 'Ya} e & and analogously f~'[y = a] e &, therefore fe M N M, = M.

Theorem 2.2. For any partially ordered set Y we have
B M,.

Proof. Since all the sets [y < a] and [y > a] are open, they are also Borel sets
and hence for any Borel measurable function we have f "![y < a]e ¥ and f [y >
>a|e.

As shown by Example 3.1 of [1], # = #,, does not hold in general. Nevertheless,
the following theorem states a sufficient condition for the two classes to coincide.

Theorem 2.3. Let Y be such a partially ordered set that the order topology ¥4
has a countable basis. Then

B=M,.

Proof. In view of Theorem 2.2 it is sufficient to prove that for every f e 4, and
any U € ¢ we have f "!U € &. Since ¢ has a countable basis, the open set U can be

o)

written in the form U = {J U, where U, are finite intersections of sets of the type

n=1
[y < a] or [y > a]. Therefore Ueo({[y < a], [y > a]; aeY}) and hence
fWUes.
The converse of the last theorem is not true as can be shown by the following
example in which ¢ has no countable basis and yet o(%) = o({[y < a], [y > a];
aeY}).

Example 2.1. Let Y be the space of all real-valued functions onI = <0, 1) and put
f<ge((Vxel)f(x) < g(x) v (vxel)f(x) = g(x).

There is no difficulty in verifying that Y is a partially ordered real linear space. We
show, nevertheless, that the order topology ¢ on Y has no countable basis. Let N
denote the set of all integers, N' the collection of all integer-valued functions on I.
Then for every pe N', the set D, = {feY; p < f < p + 1} is an open set in Y. The
family { D,; p € N'} is disjoint and uncountable which proves that ¢ has no countable
basis.

If we denote by 7 the o-algebra generated by the class {[y < a], [y > a]; aeY},
it is sufficient to prove now that every open subset of Yis in . Every basis element
of ¢ is a finite intersection of sets of the form [f < a] or [f > a]. Owing to well
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known properties of real numbers every basis element C of ¥ is a collection of fe Y
characterized by exactly one of the following statements

() GaeY)f<a
(i) QaeY)f>a
(iii) (3a, beY)a < f < b.

Now every set G in ¢ is a union of such sets and, since on the real line every union
of intervals can be expressed as a countable union of intervals, G can be written as
a countable union of some basis elements and hence G €  as claimed.

Lemma 2.1. Let f,e M. (f,e M) for n=1,2,.... Let there be a function
f:X = Y such that for each x € X we have f(x) = V{f(x); n = 1,2,...} (f(x) =
= Alfu(x);n=1,2,...}). Thenfe M. (fe M)

Proof. f, e # . means that iy ale & for each n and every yéY. Then
Ty sa]={xeX;f(x) L a} = {xeX; Vf(x) S a} = N{xeX; f(x) S a} =

= Nf, [y £ a] € &. The dual assertion is obtained analogously.

Theorem 2.4. .///, c M, ./{\ cMs, My M.

Proof. For the first statement, suppose that f is a function in . ,. Hence there
are simple f,, n = 1,2, ... with f, ~ f. Evidently every simple function is in /<
and by Lemma 2.1 it follows from f,, ~ f that f € ./ .. The second statement is anal-
ogous and the last one follows from the first two.

After we have shown that every strongly measurable function is measurable, the
question arises whether the converse is true. We are going to prove a sufficient con-
dition for a measurable function to be strongly measurable.

Lemma 2.2. Suppose Y is a lattice. Let there exist a countable set Q < Y such that
every y €Y is equal to \V{q € Q; q < y}. Then every f e M5 bounded from below
by somebe Q isin M ».

Proof. Let fe # 5, f(x) = b for each x € X. Enumerate Q = {g,; n = 1,2,...},
and define simple functions g,(x) = g, iff f(x) 2 g,, and g,(x) = b otherwise. Put
fo(x) = V{gix); i < n}. Since Y is a lattice, the supremum defining f,(x) exists and
each f, is a simple function. Evidently f, < f, ., for each n and (Vx)f(x) = V{4.;
dn < f(x)} = Vgux) = VSi(%).

Lemma 2.3. Let Y be a lattice and Q < Y countable and such that (VyeY)y =
=AN4geQ;q2y} Letfe M and (3be Q) (VxeX)f(x) £ b. Thenfe M.

Proof. Dual to that of Lemma 2.2.
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Definition 2.1. We shall say that a partially ordered set Y is quasi-separable iff
there is a countable set Q < Y such that for every yeY we have y = V{ge Q;
q <y} = A{g€Q; g = y}. Such a set Q will be called quasi-dense in Y.

Lemma 2.4. Let Y be a conditionally o-complete partially ordered set and let 4
denote the order topology. Then every set Q dense in the topological space (Y, %)
is quasi-dense in Y. Hence every separable conditionally g-complete partially
ordered set is quasi-separable.

Proof. Take y €Y. Since 4 = {g € Q; g < y} is bounded from above by y and
countable, there exists a = YV A. If it were a < y, there would exist g € Q with a <
< g < y. But then g€ 4, hence q < a, a contradiction which proves that y =
=V{q€Q; q < y}. The proof of y = A{ge Q; g = y} is analogous and the
second part of the theorem follows immediately.

Remark. In case Yis a partially ordered linear space, any one of the conditions
(3Q countable) (VyeY)y = V{ge Q; q < y} and (3Q countable) (VyeY)y =
= A{q € Q; g = y} implies the other one and hence the quasi-separability of Y.

Theorem 2.5. Let Y be a quasi-separable (or separable and conditionally o-
complete) lattice. Then every bounded function in M is in M.

Proof. A direct application of the last three Lemmas.

Theorem 2.6. Suppose that Y is a lattice. Let f,e M ., n = 1,2,... and f, 7 f:
:X > Y. Then fe M 4. Dually, M 3 f, \ f implies f € M-,

Proof. There are simple g ~ f, (m - «). Put g, = V{g?; i < n}. Then g, are
simple and g, 7 f.

Theorem 2.7. Under the hypotheses of Lemma 2.2 (2.3) every function in Jl\(.//l,)
bounded from below (from above) is in M (M.).

Proof. To prove that part of the theorem which is not in brackets, let f e A+.
By Theorem 2.4 we have f € # > and under the hypotheses of Lemma 2.2 it follows

from f being bounded that f e .# , as claimed. The dual part of the theorem is
obtained by a dual proof. '

Corollary. If of denotes the family of bounded functions from X into Y, where Y
is a partially ordered space which is quasi-separable, or separable and condition-
ally a-complete, then s O M O M = A O M5 = A O M.
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3. WEAKLY MEASURABLE FUNCTIONS INTO A LINEAR SPACE
Throughout this section Y will be a partially ordered real linear space.

Lemma 3.1. Let & denote any of the classes M o, M5, M, Mo, M, M,, #_,
My, M, M and B. For aeY and f: X — Y let f + a be the function attaining
the value f(x) + a in each x € X. Then for every a€Y and every fe ¥ we have
f+aeX.

Proof. For & = M, M5, M., M, #_ the assertion is trivial, hence also
for & = A, and A.Inthe case & = A , it is sufficient to observe that whenever f,
is a simple function then so is f, + a and that V(f,(x) + a) = (Vf(x)) + a. The

proof for.Z = # is analogous and the last two cases yield the assertion for
L =M,

In the case & = 4, since every partially ordered linear space with the order topo-
logy is a topological group, we have

{xeX; f(x) + aeG} ={xeX; f(x)eG - a}e &

for any open set G due to G — a being also an open set.

Lemma 3.2. Let £ denote any of the classes M, # and M . If fe L and t e R,
then tf € £. (R is the field of reals.)

Proof. Let fe .#,, that is, {x; f(x) < a} e ¥ 3 {x; f(x) > a} for each aeY.
If t>0 we have {x;tf(x) <a}={x;f(x) <aft}e¥ and {x;tf(x)>a} =
= {x; f(x) > aft}e &. If t <0 we get {x; 1f(x) < a} = {x; f(x) > aft} €& and
similarly {x; tf(x) > a} € &. Finally, if t = 0, then tf is the constant function equal
to the zero element O of Y and hence tf € A4,,.

The proof for &£ = # is obtained by rewriting the last one, replacing < and >
by = and = respectively.

In the case & = A itis sufficient to realize that if [, is simple, then so is tf, and,
fort > 0, f, » f implies tf, 7 tf, f, ~\ fimplies tf, \ tf, whereas for t < 0 we have
tf, \ tfortf, 7 tf whenever f, 7 for f, N\ f, respectively. For t = 0 and any f € 4
we have tf = O e A,

Theorem 3.1. If Y is separable, then M, is a real linear space. The partial
ordering < of M, satisfies (vy) and (v,).

Proof. By Lemma 3.2, if fe #,, and t € R, then tf € #,,. To prove that for f, g €
€ #, we have f + g € M, we first show that for any f, g € &, the set {xeX;
f(x) < g(x)} is in &. In fact, if Q is a countable dense subset of Y, then {x; f(x) <
< g(x)} = U{{x; f(x) < g < g(x)}; geQ} is a countable union of sets in &,
and hence is itself in &. Now if f and g are in #,, then sois —g + aforanyaeY
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and hence {x;f(x) + g(x) < a} = {x;f(x) < —g(x) + a} €& and {x;f(x) +
g(x) > a} = {x; f(x) > —g(x) + a} € ¥. We have thus proved that .#, is a real
linear space. The properties (v,) and (v,) are immediate consequences of the definition
of < in #,, (see Section 1).

4. STRONGLY MEASURABLE FUNCTIONS INTO A LATTICE

Theorem 4.1. Let Y be a quasi-separable and conditionally o-complete lattice.
Then the family of all bounded functions in M is a lattice.

Proof. Let f, g € #,. Then there are simple f, 7 f, F, N f, 9s 7 9, G, Ng. To
prove f v g e # we show that f, v g, # f v g and F, A G, \ f A g. Evidently
f=f,andg = g,implyf v g = f, v g, for each n. Thus, f v g is an upper bound
for the non-decreasing sequence of f, v g,. To prove that it is the supremum, sup-
pose h = f, Vv g, for every n. Then (Vn) h 2 f, and hence h = f. Similarly, h = g,
for each n and hence h = g. Since h = fand h = gweinferh = f v gandsof v g
is the supremum of {f, v g,; n = 1,2, ...}. Now since we have proved f v g € A ,,
owing to the boundedness of both f and g and quasi-separability of Y we infer by
Theorem 2.7 that f v g € #,. Thus f v g € #, and is bounded. The proof that
f A g belongs to # and is bounded is analogous.

Theorem 4.2. Let Y be a quasi-separable real linear lattice. Then the family
M, of all bounded and strongly measurable functions into Y is a partially
ordered linear space (f < g means f(x) < g(x) for each x).

Proof. Take f,ge M, N . There are simple f, 7 f, gm 7 g» Fy N fy G N g
For any m we have f, + g, 7/ f + gm Fn+ G, ~f + G, with n —» co. Thus
ftgmel s, f+ G,eM N and hence by Corollary to Theorem 2.7
functions f + g,, and f + G,, are in A N & for each m = 1, 2, ... Since evidently
f+9m 72 f+ gand f+ G, \f+ g with increasing m, we deduce from Theorem
2.6 that f + ge M ~ M. Due to f and g being bounded we obtain f + g€
€ M, N . Applying now Lemma 3.2 with & = #, to a function fe #,and te R
we have tf € #,, and realizing that tf is also bounded we complete the proof that
M, " o is a linear space. Conditions (v,) and (v,) are verified without difficulty.

Example 4.1. As an example of a quasi-separable linear lattice we may take any
finitely dimensional real linear space Y with the ordering defined by a < b iff for all
coordinates ¢" £ b". Then Yis evidently a linear lattice. It is conditionally g-complete
since for any countable set {a,; m = 1,2, ...} of vectors which is bounded from
above by b we have in each coordinate a, < b" and it follows from well-known
properties of real numbers that there is a" = sup,, an. Then a defined by coor-
dinates a” is the supremum of {a,; m = 1,2, ...}. Indeed, we have

(Vn) (Vm) i = a
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and if for some ¢ with ¢ 2 a,, (m =1,2, ) the inequality ¢ = a were not true, then
there would exist n such that ¢” < a” and then, since a" = sup,, a;,, we would have
¢" < ap, for somg m, which contradicts (Vm) ¢ 2 a,,. In a similar way we may prove
that the countable set Q of all vectors with rational coordinates only is quasi-dense
in Y, actually, (VyeY)y = V{qe Q; ¢ S y} = AlgeQ; 9 2 y}.

It is worth noticing that if the dimension of Y is greater than one, than Y is not
separable in the topological sense, since the order topology in Yis discrete. Indeed,
for every y € Y we have {y} = Y; nY, where

Y={zeY, y'—1<zZ<y+ 1, =) forj+i} (i=12)

are open sets.

5. AN INTEGRATION THEORY FOR BOUNDED STRONGLY
MEASURABLE FUNCTIONS

As an application of general results we construct in outline an integration theory
of Daniell type. In this section Y denotes a conditionally o-complete quasi-separable
linear lattice.

Denote by o the family of all bounded strongly measurable functions, i.e., 4 =
=ANMy=ANMy= AN M (see Corollary of Theorem 2.7). Let Ay be
the family of all simple functions f : X — Y (see Section 1). We start with a function
Fo : Ko — Y satisfying the following conditions:

(1) £ (uf + vg) = u Fo(f) + v Iy(g) for u,veR, f,ge A,
(QIf f<g, fige, then F(f) < Fo(g).
B) If fpeHo(n=1,2,...) and f, \ 0, then Fy(f,) v Fo(0) = 0.

Lemma 5.1. If f,, g, F,, G, et (n=1,2,...), feX and f, 7 f, g, 7 f,
F, \f, G, \f, then

VILL) = VFoa) = AFo(F) = AFo(Gy).-

Proof. For fixed m we have f, A g,, 7 f A g, = g (n > ©), hence g,, —
— fu A gm 0 and therefore

0= /n\fo(g,.. —fu A Gm) = /n\(fo(g...) = So(fu A Gm) =
= So(gm) — \"/(fo(f.. A Gm) Z Folgn) = VI o).

Now we have #£¢(g,,) < VFo(fs) (m = 1,2, ...) and hence also VF(g,) < VFo(f,)-

The converse inequality and the equality
/\JG(G») = A'j O(F n)
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