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IRENA RACHUNKOVA, Olomouc
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Academician O. BORUVKA introduced in [1] the definitions and established
properties of general dispersions, giving a characterization of dispersions of the 1%,
2md 31 and 4 kind as well as of central dispersions. Further he studied the sets of
dispersions of the 1°* and 2™ kind.

The subject of the present paper was suggested by Professor M. LAITOCH who
directed my attention to the possibility of a parallel study of the 3'® and 4™ kind
dispersion sets.

The opening part establishes a representation of the 3™ kind dispersions by means
of unimodular matrices. *

In the second part we define equivalence relations ~ and =~ in the 3™ kind disper-
sion set Dj:

X3 ~ Y5 if and only if there exists ¢, € C; such that X;¢, = Y3, where C; is the
group of central dispersions of the 1* kind, X5, Y5 € D3;

X5 ~ Y if and only if there exists &', € D,/C; such that X; e C;%'; and at the
same time Y; € C34;.

The relations turn out to be the same and hence the decompositions D;/~ and
D,[~ coincide. Hence, for any coset &5 € D3/ ~ we can uniquely determine a coset
%,€D,|C; by ¥, = %3C, = C;%;. Moreover, any dispersions X, € Z; and
X3 e X, satisfy &5 = X53C; = C3X .

In the next part we show the existence of a 1 —1 mapping of the set D,/ ~ onto the
factor group L/{E, —E}. (Any coset %' € D,/ ~ is associated with a couple of uni-
modular matrices {C, —C}). Further, Z,8, = B,Z,; = B;, where B3(B,) is the
set (the group) of the 3" kind (the 1°* kind) direct dispersions and & is an arbitrary
element in B, £'; € B,.

The concluding part of the paper is devoted to transfering the results proved for
the dispersions of the 3™ kind to the case of the dispersions of the 4'® kind.
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Basic concepts and relations. (q) will always denote an ordinary linear differential
equation of the 2°¢ order in the real domain y” = ¢(r) y, where q(t) € C3 (j = (a, b)
is an open definition interval) and g(f) < O for every ¢ € j; the differential equation (g)
will be always assumed oscillatory in (a, b), that is, the integrals of this equation
vanish infinitely many times in both directions towards the endpoints a, b of the
interval (a, b). (q,) will always denote the associated equation of (g). (See [1].) The
integral space (i.e., the space of all solutions) of the differential equation (g), (q,)
will be denoted by R, R,, respectively. The concepts not defined in this paper were
adopted from [1].

1. DISPERSIONS OF THE 3RP KIND

Representation by means of unimodular matrices. Let X; € D; be an arbitrary
dispersion of the 3 kind, D, the set of all dispersions of the 3 kind. Choose a basis
(U4, V) of the integral space R, and denote its Wronskian by W;; let u(f), v(t) be
the functions

0 ) = L] - WX,

VIX3(1)] JIXa(0)]
By [1, § 20, 6.3], the functions u(f), v(¢) are linearly independent integrals of (¢) and
thus they form a basis of the integral space R. Their Wronskian w satisfies

(2 w=W,.sgnXj.

By [1, § 1, 9] there exists exactly one integral y of (g) for each integral y, of dif-
ferential equation (g,) such that

y'(1)
3) yalt) = =
V0a()
Consequently, it is possible to determine exactly one basis (U, V) of R for the basis
(U4, V) of R, such that the corresponding functions U, U, and V, V; satisfy (3).
The bases (u, v), (U, V) of the same space R are connected in the following way

4) u(t) = ¢y U(t) + ¢, V(1) , o(t) = ¢y U() + ¢35 V(1)
and hence
(5) w=W.detC,

where w and W are the Wronskians of the bases (u, v) and (U, V), respectively.
Further,
U, "y

Wl =
Uy Vi

=(UV-UV).sgng=W.
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Now by (5),

and (2) and (6) imply
(7 det C = sgn X3 .

Therefore the matrix € is unimodular.

Theorem 1.1. For any dispersion X5 € D5, the unimodular matrix C is uniquely
determined by (4).

The theorem results from the above consideration.

Theorem 1.2. For any unimodular matrix, there exists at least one dispersion
of the 3" kind associated with it through the relations (4) and (1).

Proof. Let C = ||c,| be an arbitrary unimodular matrix. Let us consider the
integral ¢,; U + ¢,, V and let ¢, be its arbitrary zero point. Let T, be a zero point
of the integral V;, such that

N

(8) sgn Uy(T,) = sgn (cqy U(ty) + c12 V(t0)) »
where U(t), V(t) is a basis of R, U,(¢), Vy(?) is thé basis of R, such that

U'(s) V(i)

=T

Jlal”
Let us consider the linear mapping p

p = [u(t) > U(1), o(t) > Vi(9)],

where u(t) = ¢;y U(t) + ¢4, V(2), o(t) = ¢34 U(f) + ¢,, V(¢). This mapping is nor-
malized with respect to ¢y, T, and thus uniquely determines the dispersion X, € D.
(See [1, §20,2].) Further,

: Ul(t) =

_detC.W_detC.W
W, W

=detC = +1,

14

where y, is the characteristic of the linear mapping p. Hence by [1, § 20,6 (17)] we
have for any Y, € Ry,

VO T

y
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where y € R and Y; = py. The sign + or — does not depend on the choice of the
integral Y;. Therefore by (7)

U,[X5(7)]
VIX5(0)]

Vi[Xs(1)]

VIXs0)l

The dispersion X (f) is associated with the matrix C in the required manner.

= +u(t) = ¢;; U(t) + ¢,, V(1),

= +o(t) = ¢, U(t) + ¢, V(1) -

The decomposition of the set D; determined by the equiyalence relation ~ or =~.
Now we shall introduce the relation ~ in the dispersion set D5 as follows:

Let C, be the group of central dispersions of the first kind, X5, Y5 arbitrary disper-
sions of the 3" kind of D;.

(9) X; ~ Y5 iff there exists ¢, € C; such that X3¢, = Y.

Theorem 1.3. The relation (9) is an equivalence relation on the set D.

Proof. Let X3, Y3, Z; be arbitrary dispersions in D5. Since there exists a dispersion
¢o(t) = te C; such that X;¢p, = X,, it holds X; ~ X; for each X;e D;. Let
X; ~ Y;. Then X530, = Y3, X30,0_, = Y3¢_,and hence Y;¢_, = X5. ThusY; ~ X3.
Let X3 ~Y;and Y; ~ Z;, X530, = Y3 and Y39, = Z;. Therefore X;0,0, = Y30, =
= Z3, X530, = Z; and thus X; ~ Z,.

Theorem 1.4. The relation (9) forms a decomposition Ds[~. The set Cy of all
central dispersions of the 3™ kind forms exactly one coset of D3[~.

Proof. a) Any central dispersion y, € C; (v = +1, £2,...) can be expressed (see
[1, §12,4(7)]) in the following manner:

In = X1Pn-1> X-n=X1P-n> B =1,2,....

This implies that any central dispersion x, (v = £1, £2,...) and the dispersion g,

are equivalent (in equivalence ~) and thus all dispersions x, belong to the same coset
Of D3/ ~, s

b) If a dispersion X3 and an arbitrary central dispersion y, are equivalent, then X5
is also a central dispersion. Indeed, in this case X3¢, = x,, X30,0_, = x,00-, and
therefore X; = g, € C;. )

Corollary 1.1. Let %5 be an arbitrary equivalence coset of D3|/~. Then &5 =
= X,C,, where X3 is a dispersion in the coset X 5. Also X;C; = ¥,C;.
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Let us now consider the group D, of the first kind dispersions and its cyclic sub-
group S, of central dispersions with an even index. The latter one is a normal sub-
group of D,. The factor group D, /S, and the group L of all unimodular matrices of
the 2™ order are isomorphic. (See [1, § 21,6].) Let

@:D,/S, > L

be the isomorphism considered in [1]. In this isomorphism the group S, (the set §;

of the first kind central dispersions with an odd index) and the unity matrix E (the

matrix —E) correspond to each other. §; U §; = C; is the group of the first kind

central dispersions and it is also a cyclic subgroup of the group D,. (See [1, § 21,6].)
Let us now consider the induced isomorphism

{81, 8,} - {E, —E}

between two-element subgroups {S;, S;} and {E, —E} of the groups D,/S; and L,
respectively. Since {E, — E} is a normal subgroup of L, {S, §,} is a normal subgroup
of D,[S, and the relative factor groups are isomorphic:

@' : (D/S)|{S:, S;} - L|{E, —E}.

Furthermore, for arbitrary 2, € D,/S,, Z,.{S,,8,} = {51, S,} . %, and hence
%8, = S&,, where S;e{S;, S;}. Thus, for arbitrary X, e%, and ¢,eS,,
there exists ¢, € S;and X, € &, such that X,¢, = ¢,X,. Since X, X, € Z,, there
exists ¢, € S, such that X, = ¢,X,. Hence X0, = ¢,¢,X, and X,C; < C,X,. The
converse relation X,C; 2 C,X; can be proved by analogy. Consequently, it holds
X,C; = C{X,. Since C, is a normal subgroup of D,, we can form the factor group
D,/C,. Any two elements X,,Y; € D, belong to the same coset of DI/Cl if and
only if X, ~ Y, i.e., if there exists ¢, € C; such that X, = Y,¢,. Let

[+ s Dl/sl i DI/CI

be a mapping of the factor group D, /S; onto the factor group D,/C; such that each
coset X,C; € D,[C, is mapped onto the coset XS, € D,/S,. Thus «(X,S,) = X,C,.

Lemma 1.1. The mapping « : D[S, — D,|C, is a homomorphism. The kernel of
this homomorphism is the two-element subgroup {S,, S,} to which the element
C, € D,/C, corresponds.

Proof. Let X,S,,Y,S; be arbitrary elements in the group D,/S;. Then
AX,S,.Y,8,) = o(X,Y,8,8,) = a(X,¥,8,) = X,Y,C; = X,¥,C,C; = X,C,.Y,C; =
= «(X,S,). «(Y,S,;). Thus a is a homomorphism. Further «(S,) = C,, «(S,) =
= «(¢,S;) = ¢,.C; = C, where o is an odd integer. If &(Z,) = C, for a coset
Z, € Dy[S,, then &, = X,S; where X, e, implies C;, = «%,) = «(X,S,) =
= X,C,. Thus X, € C, and hence either X,S; = §; or X,§; = §,.
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Remark 1.1. According to Lemma 1.1, there exists an isomorphism

©:D,/C; = (Dy/S,)/{S1, 5.} .

-

If we now compose the isomorphisms t and ¢’ we obtain an isomorphism
¢'t:D,|C, - L|{E, —E}.

Clearly ¢'1(C,) = {E, —E}. Also for any element X,C, e D,/C;, ¢'{(X,C,) =
= {C, —C} where C is a matrix in L such that ¢(X,S;) = C. (¢ is the above de-
scribed isomorphism D, [S; — L).

Now, let us return to the set D; and the equivalence relation (9).

Lemma 1.2. For each dispersion of the 3" kind X, € D; and for each central
dispersion x, € C; there exists a dispersion of the first kind X, € D, such that

(10) X3 = xX; .

Proof. For each central dispersion of the 3" kind y,(¢ = +1, +2,...) there exists
a central dispersion of the 4™ kind w_, € C4 such that w_,x, = x,0_, = @o(t) = t.
(See [1, § 12,4 (6)].) Consider now the function w_,X 5, where w_, € C4 and X5 € D;.
Then by [1, §21,8] w_,X; €D, and there exists X; € D such that X; = o_,X;.
Also 3, X, = x,0-,X3 = ¢oX3 = X; and hence X, € D, satisfies the equality (10).

Lemma 1.3. If two different central dispersions of the 3" kind Xo» Xo € Cs fulfil
X3 = %, X1, X3 = XYy, then X, = Y,0, and thus X, Y, lie in the same coset of the
factor group D,|C;.

Proof. It holds x, ~ X, X, = %s®,» Where ¢, € Cy. From x,Y; = x,. X, it follows
that x,Y; = x,¢,X, and hence w_,x,Y; = w_,x,¢,X,. Therefore Y¥; = ¢, X, and
alSO X]. = Yl(pv'

Corollary 1.2. For each dispersion of the 3" kind X5 € D, there exists a dispersion
of the 1°* kind X, € D, such that X5 € C3X,. Thus, for each dispersion X; there
exists exactly one coset &, = X,C; of the factor group DI/C1 such that X5 € C3% ;.
Consequently, C;X; = C;%, holds.

We shall now introduce a binary relation = in the set D5 as follows:

(11) X, = Y; iff there exists &', € D,/C, such that X; € C;&, and at the same time
Y3 € C3.%~1.

Theorem 1.5. The relation (11) is an equivalence relation in the set D;.

Proof. By Corollary 1.2, X5 &~ X; holds for each X; € D;. Now let X, ~ Y;.
Then there exists a coset &, € D,[C; such that X; € C3% and Y; € C3%;. Therefore
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Y; &~ X;. Let X3 ~ Y;. Then there exists 2'; € D,/C, such that X; € C;% and Y; €
€ C3%y. Let also Y3 & Z;. Then there exists #; € D,/C, such that Y; € C;%, and
Zye Cy%,. From Y; € C3% and Y; € C3%, it follows (by Lemma 1.3) that there
exists ¢, € C; such that X, = Y, ¢, and hence &, = %,. Herefrom X; ~ Z;.

Theorem 1.6. Two arbitrary dispersions of the 3™ kind X,,Y; € D; fulfil X; ~ Y,
if and only if X3 =~ Y,.

Proof. a) Let X5 & Y;. Then there exists 2, € D,/C, such that X, € C;&, and
Y; e C3%,. Thus X; = x,X,, Y5 = x,Y;, where y,, x,€C3, X;,Y; €Z,. Since it
holds X, = Y,¢, and x, = x,¢, where ¢,, ¢, are proper dispersions of C; we have
X3 = L0110y = %:Y10,,0, = Y30,,, thus X35 ~ ¥;.

b) Let X; ~ Y;. Then there exists ¢, such that X3¢, = Y;. By Corollary 1.2 there
exists a coset &'y eDl/C1 such that X; € C3%,. So X3 = x, X, where x, € C; and
X, €Z;.ThenY; = X;0, = x,.X,;0,. Thus Y; € C3Z'; and therefore X; ~ Y;.

Hence the decompositions D3/~ and D,/=~ coincide.

Let us recall that if we consider an arbitrary dispersion X; € D; and compose it
with all central dispersions of the 1** kind (i.e., with dispersions from C,) we obtain
exactly one coset 'y € D3/ ~. Thus &3 = X,C;, where X; € &';. (See Corollary 1.1.)

Theorem 1.7. Let X5 be an arbitrary dispersion in Dy and let X3 = X,C, be
a coset of Ds[~. If we compose a dispersion X, € D, associated with X3 by (10)
with all central dispersions of the 3 kind (i.e., with dispersions in C,) we obtain
exactly one coset &3 € D3[~. Thus &3 = C;X, and

(12) C3X1 =X3C1=g‘3.

Proof. This theorem is an immediate consequence of those above.

Theorem 1.8. For each coset & 3 € D3|~ there exists exactly one coset &, € D,|C,
such that

(13) g3=%‘3C1=C3£‘1-

Proof. By Corollaries 1.1 and 1.2 it holds X;C; = &,C, and C;X; = C;% ;.
Herefrom and by (12) we have (13). Let us now consider a coset %3 € D;[~. Let
X3 = C3Y;, where Y; e D,. Then Y, ~ X, and therefore Y, € &', and for a coset £,
the coset &, is uniquely determined. The converse is evident.

The properties of the factor set D, and the factor groups £ and D,. Let us denote
the factor set D;/~ by D, the group D,/C; by D, and the group L/{E, —E} by 2.

On the basis of the results contained in the preceding part we can express the following
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Theorem 1.9. There exists a 1 —1 mapping
- ﬁ g D3 -8 2

given in the following way: For each & 3 € D, f(Z ;) = {C, —C} where {C, —C} =
= (p"t(%'l)for C3‘%'l = g‘:,.

Lemma 1.4. If we compose an arbitrary dispersion X, € &5 and another one
X, € & we always obtain a dispersion from the same coset %, € D;.

Proof. Let X; and X, be arbitrary dispersions in &3 and &, respectively. Then
X3X, €%, Now let X3 ~ X3, X; ~ X,, that is X; = ¢, X3, X, = ¢,X;. Then
X,X, = X30,X,0, = X3X,0,¢, = X3X,0, and therefore X,X; ~ X;X,. Con-
sequently X,X, e %,.

Now we can introduce a multiplication of cosets from D; and D; by means of
Lemma 1.4 as follows:

.%’3-%‘1 =@3,

where % is the coset from D; containing the product X;X,, where X;, X, are
arbitrary elements of &'; and Z,, respectively.

Lemma 1.5. Let  be the mapping from Theorem 1.9 and @'t the isomorphism
from Remark 1.1. If B(Z;) = {C, —C} and ¢'«(¥,) = {G, —G}, where ;e D;,
¥, €D, and {C, —C},{G, —G} € &, then B(%,¥,) = {CG, —CG}, {CG, —CG} e
€ L.

The proof is evident.
£ is decomposed into two equivalent subsets:

the subset of unimodular matrix cosets whose determinant is equal to +1 and that
one whose matrices have determinant equal to —1. A consequence of this is that D,
(and also D, see [1, § 21]) decomposes into equivalent subsets as well:

the set B4(B,) of direct, i.e., increasing dispersion cosets the corresponding
matrices of which have determinant equal to +1 (compare with (7) in the first part
of this paper); g

the set of indirect (decreasing) dispersion cosets the corresponding matrices of
which have determinant —1.

Theorem 1.10. Choosing an arbitrary coset X5 € B3 and composing it with all
Z, € B,, we obtain again the whole set B;. That is, B, = B, for any Z; € B,.

Proof. Let (%5) = {C, —C}. Clearly det C = det (—C) = +1. Let ¢'t(Z,) =
= {G, —G}. Clearly det G = det (—G) = +1. By Lemma 1.5 B(Z,%,) =
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= {CG, —CG} and since det CG = +1, X%, € B, for each Z', € B,. Let now &
be an arbitrary element of B;. Then for &' there always exists %, € D, such that
Z3 = %,%,. We now prove the relation %, € B, by means of the matrix represen-
tation: '

Let B(Z;) = {A, —A} and ¢'t(%,) = {B, —B}. From Z; = %,%, we obtain
by Lemma 1.5 for the corresponding cosets of matrices {A, —A} = {CB, —CB}.

Suppose first that A = CB. Hence the elements of the matrices satisfy

c11byy + caby = ayy,
C11b12 + c12by; = ay,,
c21byy + €22by = ayy,
€21b12 + €22by; = ay,

and hence det B = det A .det C = +1.

Similarly, if —A = CB then det B = det A.det C = +1. Evidently also
det (— B) = +1. Matrices corresponding to the coset #; have the determinant equal
to + 1, that is, #, € B,.

Completely analogously we could prove the following

Theorem 1.11. Choosing an arbitrary coset £, € B, and composing it with all
Z 3 € B3 we obtain again the whole set B;. Further it holds

g:a%l ?%3‘%1 =$3,

where Z 5 is an arbitrary element of B3 and &, is an arbitrary element of B,.

2. DISPERSIONS OF THE 4TH KIND

Representation by means of unimodular matrices. The representation will be realized
analogously to that of the dispersions of the 3™ kind. Let X, € D, be an arbitrary
dispersion of the 4™ kind and D, the set of all dispersions of the 4'® kind. Now choose
a basis (U, V) of the integral space R and denote its Wronskian by W; let u,(t), v,(f)
be the functions

(14) w(t) = SEOI - oy VX0

JXO NEAO

The functions u,(t), v,(t) form a basis of the integral space R;. Their Wronskian w,
fulfils

(15) w, - W.sgn X, .
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Following (3) we can uniquely determine a basis (u, v) of R for the basis (u,, v,) of R,.
Two bases (u, v) and (U, V) are connected by (4). Thus the Wronskians satisfy (5).
Since w; = w holds, we get

(16) w, =detC. W

and therefore det C = sgn X.

We now present a number of theorems concerning the properties of the 4™ kind
dispersions without giving their proofs since they are analogous to those of the
theorems for the 3™ kind dispersions.

Theorem 2.1. For any dispersion X, € D,, the unimodular matrix C is uniquely
determined by (4).

Theorem 2.2. For any unimodular matrix there exists at least one 4™ kind dis-
persion associated with it through the relations (4) and (14).

The decomposition of the set D, determined by the equivalence relation ~ or ~.
We now introduce a relation ~ in the dispersion set D, as follows:

Let C, be the group of central dispersions of the 1°* kind and let X, Y, be arbitrary
dispersions from D,.

(17) X4 ~ Y, iff there exists ¢, € C; such that ¢, X, =7, .
Theorem 2.3. The relation (17) is an equivalence relation on the set D,.

Theorem 2.5. The relation (17) forms a decomposition D,[~. The set C, of all
central dispersions of the 4'® kind forms exactly one coset of D4/~.

Corollary 2.1. Let Z, be an arbitrary coset of Dy/~. Then &, = C,X, where X,
is an arbitrary dispersion in the coset Z,. Consequently C, X, = C,Z,.

Lemma 2.1. For each dispersion of the 4" kind X, € D, and for each central
dispersion of the 4 kind w, € C, there exists a dispersion of the 1** kind X, € D,
such that

(18) X4 = Xlwo .

Lemma 2.2. If two different central dispersions of the 4" kind w,, w, € C, satisfy
X, = X 0, X4 = Y,0,, then X; = Y ¢, and thus X, Y, belong to the same coset
of the factor group D,[C,. '

Corollary 2.2. For each dispersion of the 4" kind X, € D, there exists a dispersion
X, €D, such that X, € X,C,. Thus, for each dispersion X, there exists exactly

24



one coset X, = X,C, of the factor group DI/Cl such that X, e ¥,C,. Hence
X,Cy = % ,C, holds.

We now introduce a relation = in the set D, as follows:

(19) X, ~ Y, iff there exists &, € D,/C, such that X, e Z,C, and at the same
time Y, € ,C,.

Theorem 2.5. The relation (19) is an equivalence relation in the set D,,.

Theorem 2.6. Two arbitrary dispersions of the 4'" kind fulfil X, ~ Y, if and only
if X, ~ Y,

Theorem 2.7. Let X, be an arbitrary dispersion from D, and let ¥, = C,X,
be a coset of D,/~. Composing the dispersion X, € D, associated with the dis-
persion X, through (18) with all central dispersions of the 4™ kind we obtain exactly
one coset X, € Dyf~. Thus 4 = X,C, and

(20) X1C4=C1X4=-%.4.

Theorem 2.8. For each coset %, € Dy~ there exists exactly one coset &, €
€ D,|C, such that

(21) %‘4=C1g4=%1C4.
The properties of the factor set D,. Let us denote the factor set D,/~ by D,.

Theorem 2.9. Between the elements of the set D, and those of the group L there
exists a 1—1 correspondence
A D4 e 2

determined as follows: For each %, € D,, y(%,) = {C, —C} where {C, —C} =
= (P’T(«%‘l)for Q‘IC4 = £‘4.

Lemma 2.3. If we compose an arbitrary dispersion X, € &, with an arbitrary
dispersion X, € ', we always obtain a dispersion from the same coset ¥, € D,.

By means of Lemma 2.3 we can now introduce a multiplication of cosets from D,
and D, as follows:

£1g4=@/4,

where %, is the coset from D, containing the product X,X,, where X, is an element
of &, and X, is an element of Z,.

Lemma 24. If y(%,) = {C, —‘C} and ¢'t(%,) = {G, —G}, where Z,eD,,
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