

Werk

Label: Table of literature references

Jahr: 1974

PURL: https://resolver.sub.uni-goettingen.de/purl?31311157X_0099|log61

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen provided $cv \ge \lambda(\varepsilon, E)$ and Theorem 3.1 implies the inequality for dim Z(c) which completes the proof.

Taking into account the existence of a bijection of $\mathscr{L}(\gamma)$ onto $Z(e^{\gamma})$ where $\mathscr{L}(\gamma)$ is either the set from Theorem 1.1 or from Theorem 2.1, we conclude

Theorem 3.2. Let $\mathscr{Z}(c)$ have the meaning from Theorem 1.1. Then to every $\varepsilon > 0$ and E > 0 there exists $\lambda(\varepsilon, E)$ so that

(26)
$$\dim \mathscr{Z}(c) < \frac{1}{2}(1+\varepsilon) \left(8e^{1+c}v\right)^{n+1} (c+\ln v) (n+1)$$

provided $e^c v \ge \lambda(\varepsilon, E), \mu/v \le E$.

Similarly we obtain

Theorem 3.3. Let $\mathscr{Z}(c)$ have the meaning from Theorem 2.1. Then to every $\varepsilon > 0$ and E > 0 there exists $\lambda(\varepsilon, E)$ so that (26) holds provided $e^{c}v \ge \lambda(\varepsilon, E)$, $\mu/v \le E$.

References

- [1] Kurzweil J.: On a system of operator equations. Journ. Diff. Eq. 11 (1972), pp. 364-375.
- [2] Kurzweil J.: Solutions of linear nonautonomous functional differential equations which are exponentially bounded for $t \to -\infty$. Journ. Diff. Eq. 11 (1972), pp. 376-384.
- [3] Friedman A.: Partial differential equations of parabolic type. Prentice-Hall Inc., New York 1964.
- [4] Ladyženskaya O. A., Solonnikov V. A., Ural'ceva N. N.: Linear and quasilinear equations of parabolic type. Nauka, Moskva 1967. (Russian.)

Author's address: 115 67 Praha 1, Žitná 25 (Matematický ústav ČSAV).