Werk Label: Article **Jahr:** 1974 **PURL:** https://resolver.sub.uni-goettingen.de/purl?31311157X_0099|log40 ## **Kontakt/Contact** <u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen ## ON CUBES AND DICHOTOMIC TREES Ladislav Nebeský, Praha (Received December 20, 1972) The notion of the n-cube Q_n (and other notions not defined here) can be found in Behzad and Chartrand [1] or in Harary [2]. The complete dichotomic tree D_n can be defined as follows: if n=1, then D_n is the complete bigraph K(1,2); if $n\geq 2$, then D_n is the tree obtained from two disjoint copies T and T' of D_{n-1} and from a new vertex v in such a way that v is joined by one edge to the only vertex of degree 2 of T and by another edge to the analogous vertex of T'. Thus D_n has 2^n vertices of degree 1, one vertex of degree 2, and 2^n-2 vertices of degree 3. The vertex of degree 2 of D_n will be referred to as its root. Havel and Liebl [3] have proved that if $n\geq 2$, then D_n is a subgraph of Q_{n+2} but D_n is not a subgraph of Q_{n+1} . Obviously, D_1 is a subgraph of Q_2 . If $n \ge 1$, then we denote by \widetilde{D}_n the tree obtained from two disjoint copies of D_n in such a way that their roots are joined by an edge; this edge will be referred to as the axial edge of \widetilde{D}_n . Obviously, \widetilde{D}_n has $2^{n+2} - 2$ vertices. Havel and Liebl [4] conjectured that \widetilde{D}_n is a subgraph of Q_{n+2} , for $n \ge 1$. In the present paper, this conjecture will be verified. We introduce the graphs Q_n^{∇} and Q_n' which are certain local modifications of Q_n . Let $n \ge 2$; by Q_n^{∇} we denote the graph $Q_n + rt - s$, where r, s and t are such vertices of Q_n that rs and st are distinct edges of Q_n ; by Q_n' we denote the graph $Q_n - u - v$, where u and v are such vertices of Q_n that uv is an edge of Q_n . The first two theorems which will be proved in the present paper are: **Theorem 1.** D_n is a spanning subgraph of Q_{n+1}^{∇} , for $n \ge 1$. **Theorem 2.** $\overset{\approx}{D}_n$ is a spanning subgraph of Q'_{n+2} , for $n \ge 1$. Both theorems will be easily obtained from the following lemma. An edge of a tree *T* incident with an end-vertex of *T* will be referred to as an end-edge. Let $n \ge 1$. By \hat{D}_n or \check{D}_n we denote the tree obtained from D_n by inserting two new vertices of degree 2 into the axial edge or into one end-edge, respectively. The path of \widehat{D}_n obtained from the axial edge of \widehat{D}_n is referred to as the axial path of \widehat{D}_n . **Lemma.** \hat{D}_n and \check{D}_n are spanning subgraphs of Q_{n+2} , for $n \ge 1$. Proof. Obviously, the graphs \hat{D}_n , \check{D}_n and Q_{n+2} have the same number of vertices. Hence it is sufficient to prove that both \hat{D}_n and \check{D}_n are subgraphs of Q_{n+2} . Let m be a positive integer. We shall say that a tree T is m-valued if each edge of T is assigned a positive integer not exceeding m. As follows from the work of HAVEL and MORÁVEK [5], a tree T is a subgraph of Q_m if and only if T can be m-valued so that (1) for each path P of T, there exists k such that precisely an odd number of edges belonging to P is assigned k. (Cf. also HLAVIČKA [6].) (A) We shall prove that \hat{D}_n can be (n+2)-valued so that (1) holds and that the edges of the axial path are assigned the integers 1, n+1, and n+2 (in some order). The case n=1 is obvious. The case n=2 is given in Fig. 1. $$R_1$$ $\xrightarrow{n-1}$ $\xrightarrow{n-$ Let $n = m \ge 3$. Assume that for n = m - 2, the statement is proved. Consider four disjoint copies of \hat{D}_{n-2} which are *n*-valued so that (1) holds and that they can be expressed as in Fig. 2, where R_i and R'_i are *n*-valued copies of D_{n-2} . If we identify the root of each of the *n*-valued trees R_i and R'_i with the vertex r_i and r'_i , respectively, in Fig. 3, we obtain an (n + 2)-valued tree \hat{D}_n . Obviously, the edges of the axial path are assigned 1, n + 1, and n + 2. It is routine to prove that this valuation fulfils (1). (B) Let $n \ge 1$; by D_n^* we denote the tree obtained from D_n by inserting two new vertices of degree 2 into one end-edge of D_n ; the vertex of D_n^* obtained from the root of D_n will be referred to as the root of D_n^* . We shall prove that D_n can be $n \ge 1$ valued so that (1) holds. The case n = 1 is obvious. Let $n = m \ge 1$. Assume that for n=m-1, the statement is proved. Consider disjoint \widehat{D}_{n-1} and \widecheck{D}_{n-1} which are (n+1)-valued so that (1) holds and that they can be expressed as in Fig. 4, where T_1 , T_1' and T_2 are (n+1)-valued copies of D_{n-1} , and T_2' is an (n+1)-valued copy of D_{n-1}^* . Join the root of T_2 by an edge assigned n+2 to the vertex t_2 and the root of T_2' by an edge assigned n+2 to the vertex t_2' (see Fig. 5). Thus we obtain \widecheck{D}_n which is (n+2)-valued such that (1) holds. Hence the lemma follows. Proof of Theorem 1. The case n = 1 is obvious. Let $n \ge 2$ and let t, u, v and w be such vertices of \widehat{D}_{n-1} that tu, uv and vw are the edges of the axial path. Then $D_n = \widehat{D}_{n-1} + uw - v$. Thus the lemma implies the theorem. Proof of Theorem 2 directly follows from the lemma. Corollary. $\overset{\approx}{D}_n$ is a subgraph of Q_{n+2} , for $n \ge 1$. Let $n \ge 2$. By \widetilde{D}_n we denote the tree obtained from disjoint D_{n-1} and D_n by joining their roots by an edge. As \widetilde{D}_n is a subgraph of \widetilde{D}_n , it is also a subgraph of Q_{n+2} .