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Theorem 2. Let y be an infinite regular cardinal. Then there does not exist a free
complete (y, 00)-distributive vector lattice on y complete generators.

Proof. Suppose that X o is a complete (y, co)-distributive vector lattice with a set
A, of free complete generators, card 4, = y. Let m be a cardinal, m > card X,.
Let B, = B be as in Thm. C'. Now we use a similar method asin the proof of Thm. 1.
Let X be as in Thm. B. We may put B = B(e). Choose two distinct elements a,, a, €
€ Ao and denote A, = 4, \ {ao, a,}. Then there exists a mapping f, of 4, onto A
and let f be a mapping of 4, into X such that f(a,) = 0, f(a,) = e and f(a) = f,(a)
for each a € A,.

Let Y be the closed vector sublattice of X generated by the set 4 U {0, e}. Then
Y is a complete vector lattice that is completely generated by the set A U {e} and e is
a weak unit of Y. Let Y, be the set of all y € Y satisfying —n(y) e < y < n(y) e for
a positive integer n(y). The set Y, is a complete vector lattice and it is a convex vector
sublattice of Y; the element e is a strong unit of Yj,.

Let M be the Stone space of the Boolean algebra B. According to Thm. D, C(M)
is (y, oo)-distributive and hence by the Lemma the vector lattice B(M) is (y, co)-dis-
tributive. From Thm. E it follows that Y, is isomorphic with B(M) and therefore Y,
is (y, oo)-distributive. Since e is a weak unit of Y and since e belongs to Y,, according
to the Lemma we obtain that Y is (y, co)-distributive. Thus there is a complete homo-
morphism y of X, onto Y. By the same reasoning as in the proof of Thm. 1 we get
that B(e) < Y. Therefore m < card Y < card X, which is a contradiction.
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