

Werk

Label: Table of literature references

Jahr: 1974

PURL: https://resolver.sub.uni-goettingen.de/purl?31311157X_0099|log36

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

Theorem 2. Let γ be an infinite regular cardinal. Then there does not exist a free complete (γ, ∞) -distributive vector lattice on γ complete generators.

Proof. Suppose that X_0 is a complete (γ, ∞) -distributive vector lattice with a set A_0 of free complete generators, card $A_0 = \gamma$. Let m be a cardinal, $m > \text{card } X_0$. Let $B_m^0 = B$ be as in Thm. C'. Now we use a similar method as in the proof of Thm. 1. Let X be as in Thm. B. We may put B = B(e). Choose two distinct elements $a_0, a_1 \in A_0$ and denote $A_1 = A_0 \setminus \{a_0, a_1\}$. Then there exists a mapping f_1 of f_2 onto A and let f be a mapping of f_2 into X such that $f(a_0) = 0$, $f(a_1) = e$ and $f(a) = f_1(a)$ for each f_2 and f_2 are a set f_2 on the sum of the s

Let Y be the closed vector sublattice of X generated by the set $A \cup \{0, e\}$. Then Y is a complete vector lattice that is completely generated by the set $A \cup \{e\}$ and e is a weak unit of Y. Let Y_0 be the set of all $y \in Y$ satisfying -n(y) $e \le y \le n(y)$ e for a positive integer n(y). The set Y_0 is a complete vector lattice and it is a convex vector sublattice of Y; the element e is a strong unit of Y_0 .

Let M be the Stone space of the Boolean algebra B. According to Thm. D, C(M) is (γ, ∞) -distributive and hence by the Lemma the vector lattice B(M) is (γ, ∞) -distributive. From Thm. E it follows that Y_0 is isomorphic with B(M) and therefore Y_0 is (γ, ∞) -distributive. Since e is a weak unit of Y and since e belongs to Y_0 , according to the Lemma we obtain that Y is (γ, ∞) -distributive. Thus there is a complete homomorphism ψ of X_0 onto Y. By the same reasoning as in the proof of Thm. 1 we get that $B(e) \subset Y$. Therefore $\mathfrak{m} \leq \operatorname{card} Y \leq \operatorname{card} X_0$, which is a contradiction.

References

- [1] K. A. Baker: Free vector lattices, Canad. J. Math. 20 (1968), 58-66.
- [2] G. Birkhoff: Lattice theory, Third edition, Amer. Math. Soc. Colloquium Publications, Vol. 25 (1967).
- [3] P. Conrad: Free abelian l-groups and vector lattices, Math. Ann. 190 (1971), 306-312.
- [4] A. W. Hales: On the non-existence of free complete Boolean algebras, Fundam. Math. 54 (1964), 45-66.
- [5] M. Jakubíková: Über die B-Potenz einer verbandsgeordneten Gruppe, Matem. časop. 23 (1973), 231-239.
- [6] Л. В. Канторович, Б. З. Вулих, А. Г. Пинскер: Функциональный анализ в полуупорядоченных пространствах, Москав 1950.
- [7] R. S. Pierce: Distributivity in Boolean algebras, Pacif. J. Math. 7 (1957), 983-992.
- [8] L. Rieger: On free \$\frac{1}{6}\$-complete Boolean algebras, Fundam. Math. 38 (1951), 35−52.
- [9] D. Topping: Some homological pathology in vector lattices, Canad. J. Math 17 (1965), 411-428.
- [10] Б. З. Вулих: Введение в теорию полуупорядоченных пространств, Москва 1961.
- [11] E. Weinberg: Free lattice ordered abelian groups, Math. Ann. 151 (1963), 187-199.

Author's address: 040 01 Košice, Švermova 5 (Strojní fakulta VŠT).