

Werk

Label: Article **Jahr:** 1974

PURL: https://resolver.sub.uni-goettingen.de/purl?31311157X_0099|log35

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

THE NONEXISTENCE OF FREE COMPLETE VECTOR LATTICES

Mária Jakubíková, Košice

(Received November 6, 1972)

Free vector lattices were investigated in [1], [3], [9], [11] (cf. also [2], Chap. XV, § 5). Since the class of all vector lattices is an equational one, for each cardinal m there exists a free vector lattice X_m with a set A of free generators such that card A = m. Hales [4] proved that there does not exist a free complete Boolean algebra with an infinite set of free complete generators (this solved the problem proposed by RIEGER [8]). Using the result of Hales we show that there does not exist a free complete vector lattice with an infinite set of free complete generators. An analogous result concerning complete l-groups was proved in [5]. Further, we examine the existence of free (α, ∞) -distributive vector lattices where α is an infinite regular cardinal.

For the terminology, cf. [2], Chap. XV. Lattice unions and intersections are denoted by \vee and \wedge , respectively. Set unions, set intersections and the inclusion are denoted by \cup , \cap and \subset , respectively. A sublattice L_1 of a lattice L is said to be a closed sublattice of L, if, whenever $\{x_i\}$ $(i \in I)$ is a subset of L_1 such that $\bigvee x_i$ exists in L, then $\bigvee x_i \in L_1$, and if the dual condition also holds. A mapping φ of a lattice L into a lattice L is said to be a complete homomorphism if it fulfils the following condition (c_1) and also the condition (c_2) that is dual to (c_1) : If $\{x_i\} \subset L$ and if $\bigvee x_i$ exists in L, then

$$\nabla \varphi(x_i)$$
 exists in L' and $\varphi(\nabla x_i) = \nabla \varphi(x_i)$.

Let us recall the definition of a vector lattice (cf. [2]).

A real linear space L with elements f, g, ..., is called a vector lattice if L is lattice ordered in such a manner that the partial ordering is compatible with the algebraic structure of L, i.e.,

- (i) $f \leq g$ implies $f + h \leq g + h$ for every $f, g, h \in L$,
- (ii) $f \ge 0$ implies $\alpha f \ge 0$ for every $f \in L$ and every real number $\alpha \ge 0$.

Thus $(L; +, \wedge, \vee)$ is an Abelian lattice ordered group; hence $(L; \wedge, \vee)$ is a distributive lattice and

$$f + (g \lor h) = (f + g) \lor (f + h),$$

$$f + (g \land h) = (f + g) \land (f + h)$$

is valid for every $f, g, h \in L$.

Let A be a subset of a complete Boolean algebra B. We say that A completely generates B if $B_1 = B$ for each closed subalgebra B_1 of B with $A \subset B_1$. The set A is said to be a set of free generators of B, if it satisfies the following conditions: (a) A completely generates B; (b) if B' is a complete Boolean algebra and if f is a mapping of the set A into B' such that the set f(A) completely generates B', then there exists a complete homomorphism ψ of B onto B' such that $\psi(a) = f(a)$ for each $a \in A$. (Cf. [4].)

Now we introduce analogous notions for complete vector lattices. For any vector lattice X the corresponding lattice will be denoted by \overline{X} . A vector sublattice X_1 of a vector lattice X is said to be a closed vector sublattice of X, if \overline{X}_1 is a closed sublattice of \overline{X} . Let A be a subset of a complete vector lattice X. We say that A completely generates X if $X_1 = X$ for each closed vector sublattice X_1 of X with $A \subset X_1$. A homomorphism φ of a complete vector lattice X into a complete vector lattice X' is called a complete homomorphism if φ is a complete homomorphism of the lattice \overline{X} into the lattice \overline{X}' . Let A be a subset of a complete vector lattice X. Then A is said to be a set of free complete generators of X if it fulfils the following conditions: (a) A completely generates X, and (b) for each complete vector lattice X' and each mapping $f: A \to X'$ such that f(A) completely generates X' there is a complete homomorphism ψ of X onto X' such that $\psi(a) = f(a)$ for each $a \in A$. If A is a set of free complete generators of a complete vector lattice X and card X is called a free complete vector lattice on Y free complete generators.

Let X be a complete vector lattice, $0 < e \in X$. The element e is called a weak unit of X if $e \land x > 0$ for each $0 < x \in X$. The element e is a strong unit of X if for each $0 < x \in X$ there is a positive integer n(x) such that $x \le n(x) e$. Each strong unit of X is a weak unit of X. Let e be a weak unit of X and let B(e) be the set of all elements $e_i \in X$ such that $e_i \ge 0$ and $e_i \land (e - e_i) = 0$. The set B(e) is said to be a basis of X.

We need the following results:

Theorem A. (Cf. [6], p. 92.) Let e be a weak unit of a complete vector lattice X. Then the basis B(e) is a closed sublattice of \overline{X} and B(e) is a Boolean algebra.

Theorem B. (Cf. [6], p. 131, Thm. 1.53.) Let B be a complete Boolean algebra. Then there is a complete vector lattice X and a weak unit e of X such that the basis B(e) is isomorphic to B.

Theorem C. (Cf. [4], § 4, Thm. 3.) Let m be an infinite cardinal. There exists a complete Boolean algebra $B_{\mathfrak{m}}$ and a subset $A \subset B_{\mathfrak{m}}$ such that A completely generates $B_{\mathfrak{m}}$, card $A = \aleph_0$ and card $B_{\mathfrak{m}} = \mathfrak{m}$.

Theorem 1. Let α be an infinite cardinal. There does not exist a free complete vector lattice on α free complete generators.

Proof. Suppose that a set A_0 is the set of free complete generators of a complete lattice X_0 , card $A_0 = \alpha$. Let m be a cardinal, m > card X_0 . Let $B = B_m$ be a Boolean algebra fulfilling the assertion of Thm. C. Further let X be a complete vector lattice satisfying the assertion of Thm. B. Since the Boolean algebras B_m and B(e) are isomorphic we may put $B(e) = B_m$. Choose a_0 , $a_1 \in A_0$ and $A_1 \subset A_0 \setminus \{a_0, a_1\}$, card $A_1 = \aleph_0$. Let $f_1 : A_1 \to A$ be a bijection and let f be a mapping of the set A_0 into X such that $f(a_0) = 0$, $f(a_1) = e$, $f(a) = f_1(a)$ for each $a \in A_1$ and f(a) = 0 for each $a \in A_0 \setminus \{A_1 \cup \{a_0, a_1\}\}$. Let Y be the intersection of all closed vector sublattices Y_i of X with $f(A_0) \subset Y_i$. Then Y is a closed vector sublattice of X, hence Y is a complete lattice and Y is completely generated by the set $f(A_0)$.

According to the definition of a free complete vector lattice, there is a complete homomorphism ψ of X_0 onto Y such that $\psi(a)=f(a)$ for each $a\in A_0$. Since e is a weak unit of X, e is a weak unit of Y. By Thm. A, B(e)=B is a closed sublattice of X and hence the set $B\cap Y=B_0$ is a closed sublattice of Y. Thus, since Y, the set Y is a complete lattice. Obviously Y is distributive. Let Y is a complete lattice obviously Y is distributive. Let Y is an Y is a complete we have Y is a complete Y in the Boolean algebra Y in the Boolean algebra Y is a closed subalgebra of Y. Since Y is a closed subalgebra of Y is a closed subalgebra of Y in the Boolean algebra Y is completely generated by Y in that Y is a contradiction.

Let α , β be cardinals. Let us consider the following condition on a lattice L(cf. [4]): (d_1) L satisfies the identity

$$\bigwedge_{s \in S} \bigvee_{t \in T} x_{s,t} = \bigvee_{\varphi \in T^S} \bigwedge_{s \in S} x_{s,\varphi(s)}$$

whenever card $S \leq \alpha$, card $T \leq \beta$ and all joins and meets do exist in L.

If L satisfies (d_1) and the condition dual to (d_1) then L is called (α, β) -distributive. If L is (α, β) -distributive for each cardinal β , then it is said to be (α, ∞) -distributive. It is easy to verify that a vector lattice is (α, β) -distributive if it fulfils the condition (d_1) .

A complete (α, ∞) -distributive Boolean algebra B is said to be a free complete (α, ∞) -distributive Boolean algebra on γ free complete generators if there is a subset $A \subset B$ with card $A = \gamma$ such that A is a set of free complete generators of B and every mapping f of A onto a subset A' of a complete (α, ∞) -distributive Boolean algebra B' which completely generates B' can be extended to a complete homomorphism of B onto B'.

Replacing "Boolean algebra" by "vector lattice" everywhere in the above definition, we obtain the definition of a free complete (α, ∞) -distributive vector lattice on γ complete generators.

Theorem C'. (Cf. [4], p. 62.) Let γ be an infinite regular cardinal. Let m be a cardinal, $m \geq \gamma$. There exists a complete (γ, ∞) -distributive Boolean algebra B_m^0 and a subset $A \subset B_m^0$ such that A completely generates B_m^0 , card $A = \gamma$, and card $B_m^0 = m$.

Theorem D. (Cf. [7].) Let B be a Boolean algebra and let M be the Stone space of B. Then the lattice C(M) fo all real continuous functions on M is (α, β) -distributive if and only if B is (α, β) -distributive.

Theorem E. (Cf. [10], Thm. v. 3.1.) Let e be a strong unit of a complete vector lattice Y. Let M be the Stone space of the Boolean algebra B(e) = B. Then Y is isomorphic with the vector lattice B(M) consisting of all bounded continuous functions on M.

A subset P of a vector lattice Q is said to be convex if p_1 , $p_2 \in P$, $q \in Q$, $p_1 \le q \le p_2$ implies $q \in P$.

Lemma. Let P be a vector sublattice of a vector lattice Q. Assume that P is a convex subset of Q and that for each $0 < q \in Q$ there exists $0 with <math>p \land q > 0$. Then P is (α, β) -distributive.

Proof. If $\{f_i\}$ is a subset of P and if $f \in P$ is the least upper bound of $\{f_i\}$ in P, then f is also the least upper bound of the set $\{f_i\}$ in Q (since P is convex in Q). A similar assertion holds for greatest lower bounds of subsets of P. Thus if P is not (α, β) -distributive, then Q fails to be (α, β) -distributive. Assume that Q is not (α, β) -distributive. Then there exists a system $\{x_{s,t}\} \subset Q$ with card $S \subseteq \alpha$, card $T \subseteq \beta$ such that all joins and meets standing in (d_1) do exist in Q and

$$v = \bigwedge_{s \in S} \bigvee_{t \in T} x_{s,t} > \bigvee_{\varphi \in T^S} \bigwedge_{s \in S} x_{s,\varphi(s)} = u$$
.

There exists $0 < f_1 \in P$ with $f_1 \land (v - u) > 0$. Denote

$$(x_{s,t} \wedge v) \vee u = \bar{x}_{s,t},$$

$$(\bar{x}_{s,t}-u)\wedge f_1=y_{s,t}.$$

Then we have

$$0 < f_1 \land (v - u) = \bigwedge_{s \in S} \bigvee_{t \in T} y_{s,t} \neq \bigvee_{\varphi \in T^S} \bigwedge_{s \in S} y_{s,\varphi(s)} = 0;$$

hence P is not (α, β) -distributive.