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OSCILLATION OF SOLUTIONS OF THE DELAY
DIFFERENTIAL EQUATION

y20 + ZpOOTOD = 0. nz 1

PAavoL MARUSIAK, Zilina

(Received September 28, 1972)

Our purpose in this paper is to give some ocsillation criteria for the nonlinear delay
differential equation

¢)) y@(1) +i§1p;(t)f:[yh,(t)] =0, n21,

where y, (1) = y[h(D] i=1,...m

(2 pieC[R, =[0,0),R,] (i=1,...,m)

(3) fieC[R,R], zf(z) >0 for z # 0, f(z) is nondecreasing

on R(i=1,...,m)
4 hie C[R,,R], hf(t)<t for teR, (i=1,..,m).

We shall assume the under the initial conditions y(f) = @(f), t < t,, y®(to) =
=y, k=1,...,n — 1, the equation (1) has a solution which exists for all ¢ >

A solution y(t) of (1) is called oscillatory if the set of zeros of y(t) is not bounded
from the right. A solution y(t) of (1) is called nonoscillatory if it is of constant sign
for sufficiently large . The equation (1) is called oscillatory if every solution is oscil-
latory.

BURKOWSKI [2], GoLLwiTzER [3], ODARIE-SEVELO [9, 10] have given necessary
and sufficient conditions for second order nonlinear delay differential equations to be
oscillatory. LADAS [4], MARUSIAK [8] have given oscillation criteria for the differen-

tial equation
¥ + F(t, y(1), y[h(D]) = 0.
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Recently, KusaNo and ONosk [7], SEveLo and VARrecH [11] and Staikos and
Sricas [12] (these papers appeared while my article was being reviewed) have proved
sufficient conditions for the oscillation of certain nonlinear delay differential equations
of arbitrary order. ~

In the next part we shall need the following lemma due to KIGURADZE [ 5, Lemma 2].

Lemma 1. Let u(t), ..., u™~(t) be absolutely continuous and of cosnstant sign
in the interval (to, 00). If u(t) 2 0, u™(t) < O for every t 2 t,, then there exists
an integer k with0 < k < m, m + k is odd and

(a) uP() 20, i=1,...k, t=t,,
® . (-t z0, i=k+1,...m, t21,,
il '
) (0 u®(1) < :
(t = o)

D, i=L.uk 123,

Analogous statement can be made if u(f) < 0, u™() = 0 in the interval (¢, o).

" Lemma 2. If u(f), ..., u™ ') are absolutely continuous and of constant sign
in the interval (t5, ) and u(t) u™(f) < 0, then there exists an integer k with
0<k<m,m+ kisodd and

(6) uP(Du()20, i=01 vouk and
(™=t uDu() 20, i=k+1,...m, t2ty,
(7) Iu(k)(t)l g m—k=1 u(m—l)(zm—k—lt) , 1=,
® [u®=P()| 2 Bam ki tum= ()|, i =1,. .k, t2 2" R,
where
2—(m+k+i)3 .

_(m—k);..(m—k+i— 1)’

Proof. The correctness of (6), (7) follows from Kiguradze’s lemma 1 [6] and its
proof. Integrating (7) i times (i € {1, ..., k}) from t, to t and using (6), we obtain

(t — go)mkHin1 :
-k)...(m—k+i-

lu(k-—i)(t)l > (m 1) |u(m—1)(2m—k—lt)| , 12 15,

If we put ¢ instead of 2™ ~*~ !¢ into the last inequality and then use u(f) u®*~*1(¢) >
= 0, we get '

(9) . |u(k-i)(t)| g |u(k—i)(2-—m+k+lt)| g
2—(m—-k+i—l)z(t _ 2m—k—lto)m—k+i-

(m—k)...(m—k+i—1)

v

1
[um= ()|, tz 2",
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Let t 2 t; 22.2" % ¢, then t — 2""*"t, > ¢/2 and from (9) with regard to
the last inequalities we get (8).

Lemma 3. Let u(t), ..., u™(t) be continuous functions in the interval (t,, ) and
u®() u(?) > 0, (k =0,1,...,m), u(t) u™*)(t) < 0 (m is an integer and let A be
a nonnegative real number. Then

_u(n)
o u(t + A)
Proof.
) ! =1, t‘={t‘ m=1},
t~o u(t + A) 1+Alimu_’(_tQ t+A; m>1
t»o U l)
because

(m)
lim #(t,) = lim () _
) u(t) t=w uMm~ U(t)

Theorem 1. Let functions p,, fi, h, satisfy (2), (3), (4) and, in addition, suppose that
(10) Y J " lp(dt < 0.
i=1

Then the equation (1) has at least one nonoscillatory solution.

Proof. Let us consider the following system

(11) yo(t) = {1, t<t,
1, t=t,
Lttt
Vira(t) = ; { ) (5(2_ to)*"” p( ) £y, [hs)]) ds +
»[ = t0)2€2—nl : l()s!_ L pds) fly,[hd(s)]) ds,

where ¢, is chosen such that

max s 6=t s)ds
(12 - ms@F [ S e s

© (S - to)Zn—l _ (S . t)2n—1 - 3

That we can do because (10) holds.
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By mathematical induction, with regard to (11), (12) and (3), it is easy to show that
1<y()Sy+1() £2,j=0,1,..., t 2 1o holds. From the last inequalities it
follows that the seqiience {y(f)};2o of continuous functions is nondecreasing and
uniformly bounded on [#,, c0) and therefore uniformly convergent on every finite
interval. Let y(f) = lim y,(f). Then 1 < y(t) < 2,t = t, and y(t) is the solution
of the equation jme

t=<t,
W) = w (s — )
Z: { ° P:( ) £(y[h{s)]) ds +
(s -

’)Zn 1 (s—t)z n—1

f i O SOTHOD 8}

However, it means that y(f) is a nonoscillatory solution of the equation (1). The proof
is therefore complete.

Theorem 2. Let functions p, f, h, satisfy (2), (3), (4) and, in addition, suppose that

(13) (@) h()=t—g(r), 0=g() =M, teR,
(ii) there exists a number B, 1 < B such that

(14) (i) I 271 p(t) dt =

Then the differential inequality
(A) ¥ + H)SGTHOD S0, teR,
(B) [y®() + p(O fO[H(]) 2 0, teR.]

has no positive [ negative] solution on [t,, o) for every t, € R..

Proof. Suppose that the conclusion of Theorem 2 is false. Assume that there exists
a positive solution y(t) of (A) for t 2 t, € R,. (The case of the differential inequality
(B) is treated similarly.) Since lim h(f) = oo as t —» oo there exists a t; 2 t, such
that y[h(f)] > Ofor t 2 ¢,.(A) with regard to (2) and (3) implies

(15) () s - pOSOTHOD <0, 121,

From y®"(f) < 0, y(t) > 0t follows that there exists t, 2 t; such that y(¢), y'(1), .
, y#*~1)(1) have constant sign for t > t,. Then by Lemma 2 for y(t) and its de-
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rivatives (6)—(8) hold, where ke {1, 3,..., 2n — 1}. By (6), y®"~1)¢) is decreasing
and y?""Y(c0) = ¢ = 0 holds.

Integrating (A) from ¢ (¢ 2 t,) to oo and neglecting y2"~1)(c0), we get

(16) Yy () 2 J‘wp(s)f(y,,(s)) ds, t2t,

and then in view of the monotonicity of y?*~)(r) and (4) we obtain

(17) () 2 J' "M fs) ds, 21

1. From (7), for k = 1 we get
(18) Y(i) = 2rm2 yan=D(n=2p) g > q,

If k = 1 then, with regard to (6), y"(f) < 0 for t = t,, y*"~1)(¢) is decreasing and
so from (18) we have

y'(! _ M) g [l - M)Zn—z y(Zn—l)[22n—2(t — M]
2 [t = M2y D2Dp), t2t,21,+ M.

From (16) using the last inequality we get

(19) yiE-M)z[t- M]z;.-sz p(s)fyi(s)]ds, t2t;.

22n=-2¢

Integrating (19) from t; to t, t = t; ,we obtain

22n=2t Fn2—-2n, __ 2n—-1 __ _ 2n—-1
(20) ¥t — M) — y(ts - M) 2 I [P = M = [ MIRTE
22n-24, 2n -1

x p(s) fLya(s)] ds + [t~ M}™"" — e, — M} J‘m p(s) fLyvi(s)] ds .

2n -1 22n-2¢

From (20), with regard to the monotonicity of y(f), f(z) and t — M < h(t), we get

e 2 [ L= MEm Lo =M ez 1y - m s,

In the sequel we shall use the method due to ATKINSON [1].

If we raise the last inequality by —p (8 > 1), then multiply by {[t — M]**~* —
— [t; = M]*~} p(2%"~2) f[¥(t — M)], (t 2 t;) and integrate the resulting in-
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equality from 1, to t5 (13 < t, < t < t5), we have
(21) Jm{[s — MJ™1 — [ty — MP"1} p(22%s) fy(s — M)] [ (s — M)] ™ ds <

< @—ﬂ—j;” [{ j ;([s — M1 = [ty — M=) p(222) fTo(s — M)] d}”]

For t5 — oo the right hand side of (21) is bounded and therefore the integral
r{[s = M7 = [ty = M]*71} p(22728) fy(s — M)] [¥(s — M)] ™" ds
ta
is convergent. If we choose t, = 2M, we can show easily that
(22) J(t,) = jwsz""‘p(Zz"‘zs)f[y(s ~M)][y(s — M)]Pds< 0.
ta

By virtue of the assumption y(f) > 0, t 2 t, and Lemma 2 either y(c0) = b > 0
or y(c0) = oo. In either case, with regard to the continuity and the monotonicity of
f (z) and the assumption (ii) of Theorem 2, there exists T = t, such that

IE=M], 4150 i>T.

[v(e = M))P

Then, from (22) we get

> J(t)z (T) 2 d J sn=1 p(22=2) ds = g (22~ 2ryn=1 j 211 p(1) dt,
T 22n-2T

which contradicts (14).
II. Let ke {3, ...,2n — 1}. Frome (8), for i = k — 1) we obtain,

y’(t) > Ktzn—z'y(zn'—n(t) , t2 2(n—kt2 =1,
where K = B;_;.
Then, with regard to (6) and (13) we have

YO zZy(t—-M K[t —-MP 2y Dt -M), tzi,2i;+M.

From (17), by means of the last inequality it follows
0
y(0) 2 K[t — M]*~? j POSINO] ds, 12 1,
t
Further, exactly as in the case I we obtain

23) 1(t5) = j "5 1p(6) (s — M)] [YO]* ds < oo .

is
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(6) implies y(t) > 0, y'(f) > 0, y"(f) > 0 and therefore y(c0) = co. Then, by
virtue of the assumption (ii) and Lemma 3

=M e SO e /DO
B 70l 7 vy, Rl 70 i

holds. In view of the last inequality there exitss T = 5 such that

=M1 z50. 27T,
ber — 7
Then we get from (23)

-]

o>Ji)2JT)2d J g1 p(238~25) s = (2321 f t>""1p(r)de,
T 2m-2T
which contradicts (14).

This completes the proof of Theorem 2.
We shall now apply Theorem 2 to obtain the oscillatory character for the equation

’ V"I"he‘orem 3. Let functions p;, f;, h; satisfy (2), (3), (4) and, in addition, suppose
(@) h(t) =t — git),0 < g(t) = M, teR,,(i=1,...,m)

(ii) there exists a number B, B > 1 such that

|z] > 4

liminflj%(z;)]'> 0, [ = L..wsy ).

Then the equation (1) is oscillatory if and only if

(24 '[ 2"~ 1p()dt = 0
at least for one je{l,..., m}.
Proof. I. The necessity follows immediately from Theorem 1.

II. The sufficient condition. Let us suppose that the conclusion of Theorem is false.
Let y(f) be a nonoscillatory solution of the equation (1). We may assume to be specific
that y[h(t)] > 0(i=1,...,m) for t = ¢t; = t, € R,. Then from the equation (1),
in view of (2), (3) we have

(25) Y0 + p O FOTROD S 0, 121

and y(¢) is a solution of (25). By virtue of Theorem 2, the inequality (25) has no positive
solution and this contradicts the fact that y(f) is a positive solution of the equation
(1). The proof of Theorem is complete.

137



Theorem 4. Let p satisfy (2) and, in addition,
(26) (a) heC[R4,R], W()=0 for t=TeR,, h(t)<t, teR,,
limh(f) =00 as t— o0,
(b) feC'[R,R], zf(z)>0 for z+0, f(z2)20, zeR,
(c) for everye> 0

® dz ~® dz
e el
@) @ . j “THOT P dt = oo

Then the differential inequality (A) [(B)] has no positive [negative] solutions on
[to, ) for every toe R,.

Proof. Suppose that the conclusion of Theorem 4 is false. Assume that there
exists a positive solution y(t) of (A) for t = t, € R.,.. [ The case of (B) is treated similar-
ly.] It follows from (26) that there exists ¢, = t, such that y[h(f)] > O for ¢t > ¢,.
From (A), in view of (2) and (b) of Theorem 4 we get y*"(f) < 0 for t = t,. From
the last inequality, by virtue of y[h(f)] > 0, t 2 t,, we can assert that the assumptions
of Lemma 1 are fulfilled. Then (5), for k =2v + 1, i =2v (ve{0,1,...,n — 1})
implies

< (20+1) @,
0y (t)g(t_tl)zvy(t), t>1t,.

By virtue of the last inequality there exists a constant K, 0 < K < 1 and a number
t, > t, such that

(28) 0 <y () < KQo)! y'(1), t2t,, ve{0,1,...,n—1}.

If we multiply (A) by [h(£)]**~* f~*[ ()], integrate the resulting inequality from
a(2max {t,, T}) to t, use Lemma 1, the assumption (b) and omit negative numbers,
we obtain

@ [TOP o ds 5 e0 + @n = 1) 500 [HOP2 1) x

% £ 1[y)] ds £ ey + (2n — 1) f R 0(s) ()2 H(s)

X f D] ds s e+ @n— 1) [ @90 x-2 £330 dx,
ha)

where ¢y =y~ (a)[h(a)]*" ' f~((a)) 2 0.
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If we integrate the last integral in (29) by parts 2(n — » — 1) times and neglect nega-
tive numbers, we obtain

(30)
J”[hl(s)]z"'1 ps)ds<C+(2n—-1)...(2v + 1) t Yy (x) x2° f7Y(y(x)) dx ,
a h(a)

where C is a positive constant.
From (30), in view of (28), we get
t

J.‘[h(s)]z""1 p(s)ds < C + K(2n — 1)!J V(%) f 1 (¥(x)) dx

h(a)

t
§C+K(2n—1)!f dz/f(z) < 0 for t— .
yih(a)]

It means that [ [h(s)]>*~* p(s) ds < oo, but this contradicts (27). This completes
the proof of Theorem 4.

Corollary 1. Let p;, i = 1, ..., m satisfy (2) and, in addition,

(31) (@) h;eC'[R.,R], hf{t)<t for teR,, h(t)=0 for t= TeR,,
limh(f) =0 as t->ow(i=1,..,m)),

(32) (b) fii=1,...,m satisfy the assumptions (b), () of Theorem 4. Then the
equation (1) is oscillatory if

(33) j “Th 01 ) dt = oo

at least for one je {1, ..., m}.

Proof. Let us suppose that the conclusion of Corollary is false. Let y(f) be a non-
oscillatory solution of the equation (1) and let y[h()] >0 (i =1,...,m) for t =
2 t; 2 toe R,.[The case y(t) < 0 is treated similarly.] Then from the equation (1),
in view of (2), (32) we have (25) and y(¢) is a positive solution of (25). This contradics
Theorem 4.

The proof of Corollary is complete.

Finally, we shall study the oscillatory properties of the differential equation

(34) yE(t) + F(t, yu(2), .o Y, (1) = 0.
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With regard to the equation (34) we assume that the following conditions are
satisfied:

C|2Ea0et), x>0, i=tim
(35) Flt, %y v )y oo

! ’ gip,(i‘)l//i(x), x;<0, i=1,...,m
F(t,0,...,0) = 0,
where (a) pi(t), i = 1, ..., m, satisfy (2),
(b) ;€ C[(0, ), (0, )], ;€ C[(—0,0), (—0,0)], i =1,...,m
Theorem 5. Let the equation (34) satisfy (35) and; in addition,
(i) ks i =1, ..., m, satisfy (4), (13),

(ii) @l2) ¥«(2), i = 1, ..., m, are nondecreasing functions,
(iii) there exists B > 1 such that
lim inf |(p( >0, hmmfl—-l >0, i=1...m.
zow z—=> =0 |Z|p

Then the equation (34) is oscillatory if (24) holds at least for one je {1, ..., m}.

Proof. The proof of this Theorem is very similar to that of Theorem 2 and hence
we omit it.

Theorem 6. Let the equation (34) satisfy (35) and, in addition,

@) hy i =1,..., m, satisfy (31)

(ii) there exist (Pi(u) ¥i(v) and @i(u) = 0 for u > 0, |ﬁ (v) =20forv<0,i=1,.
s m’

(iii) for everye > 0

J‘"" du ~® dv . -

- <00, <o, i=1,...m.

‘Jde (Pt(u)- . d . -t Iﬁi(v) '

Then the equation (34) is 6scillatory if (33) holds at least for one je {1, ..., m}.

Proof. The proof of this Theorem is very s1m11ar to that of Theorem 4 and hence
we omit it.
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