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REMARK ON LINEAR EQUATIONS IN BANACH SPACE

STEFAN SCHWABIK, Praha

(Received July 20, 1972).

In this note Fredholm theorems for linear equations in a Banach space are estab-
lished without requiring the knowledge of the usual adjoint space.

The main result (Theorem 3) concerns the operator A = I + T where T is a com-
pact (completely continuous) operator in a Banach space. In this theorem the usual
adjoint operator is replaced by the operator which is conjugate to 4 with respect to
a total space of continuous linear functionals on the Banach space. The investigation
is based on some results about the dimensional characteristic of linear operators in
a Banach space [4]. Reformulating the results from [4] in terms of linear equations
we obtain a generalization of the well known Fredholm theorems.

Let X be a Banach space (over theé field of real or complex numbers). The set of all
linear operators A mapping X into itself such that Ax is defined for all x € X (D, = X)
let be denoted by Ly(X). Let Bo(X) be the set of all bounded operators belonging to
L(X).

We denote by N(4) = {xeX; Ax = 0} the kernel of 4 e Ly(X), by R(4) =
= {yeX; y = Ax, x € X} the range of 4 € Ly(X) and define o, = dim N(4), B, =
= dim X|R(A) !). The index of 4 € Ly(X) is the number

ind4d=8,—a,.

Let X’ be the space of all linear functionals on X. A space & = X’ of linear func-
tionals on X is said to be total if é(x) = O for all £ € £ implies x = 0 e X.

For a given A € Ly(X) and a total space & = X’ we define on E the conjugate
operator A’ with values in X': ‘

A E(x) = {(Ax) forall xeX and (eZ.
l) By dim the dimension of a linear set is denoted, X,‘R(A) means the quotient space.
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By X* the Banach space of all continuous linear functionals on X is denoted;
X* is evidently total. The conjugate operator to A € Ly(X) with respect to the space
X* is denoted by A*. If A € By(X) then evidently A™ is continuous; i.e. A* € By(X ™).

The space X can be embedded into =’ (the space of linear functionals on Z) via

the usual embedding x : X — &', ie. x x(£) = &(x) for x € X. The image xX of X
in E’ is a total space.

Let now Z = X’ be a total space. As above, for a given 4’ € Ly(Z) we can define
A":xX - E'and A'* : E* - E'. If A’ € Bo(E) then A'* € Bo(Z™).

If for a given A € Ly(X) and a total space £ = X’ we have R(4’) = Z then we say
that the space £ is preserved by the conjugate operator A4'. If this is the case then also
the space xX c Z'is preserved by A" (xX is a total space in Z).

Further it can be shown that A"xx = xAx for all x € X, i.e. the operator A" :

: xX — xX conjugate to A’ € Ly(Z) is (up to the natural embedding x) identical with
the operator A if Z is preserved by A4'.

Let us suppose that £ — X ™ is a total space (Z is normed with respect to the norm
in X*). Any x € X is assigned the linear functinonal xx € Z’; the natural embedding
% : X — E’ is a monomorphism (cf. [2]). Since we have |&(x)| < ||| . |x[, the func-
tional »x is continuous, i.e. xx € E*. Moreover, the image ¥X of X in E* is a total
space (cf. [2]).

Theorem 1. Let X be a Banach space, E = X* a total subspace of continuous
linear functionals on X.

Let A € By(X) and let E be preserved by the conjugate operator A'.
If ind A = O then either

1. the equation
(1) Ax = %
has in X only one solution for any ¥ e X
or
I1. the equation
2 Ax =0

has r linearly independent solutions in X (r is an integer).

If moreover ind A’ = 0 then in the case 1. the equation
) AL =1¢
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has also a unique soltuion in Z for any & € Z and in the case 11. the equation
4) A¢=0
has r linearly independent solutions in E.

Proof. The first part of this theorem is almost trivial. Indeed, if ind A = 0 then
dim N(4) = dim X/R(A) = r, where r = 0 or r > 0 is an integer. The case I. corre-
sponds to r = 0 and the case II. to r > 0. The second part of this theorem is a con-
sequence of Theorem 3 in [4] which assures that if ind A = ind A’ = 0 then
dim (N(A) = dim N(4’) = dim E[R(4’).

Remark 1. Theorem 1 has the form of the usual Fredholm theorems. The first
part is the well known alternative and it is only a trivial reformulation of the assump-
tion ind 4 = 0. As for the second part let us mention that A’ is not the usual adjoint
operator. The classical (second) Fredholm theorem is a special case of our Theorem 1
ifweset Z = X*.

If the case II. in Theorem 1 occurs then some solvability conditions for the equation
(1) are needed. Such conditions for the classical case are given by the third Fredholm
theorem. Our aim is to obtain such a condition in terms of the conjugate equation (3).

Theorem 2. Let X be a Banach space, E = X* a total subspace. Let A € By(X),
R(A) is closed in X and N(A*) = E(A* is the conjugate operator to A with respect
to X*.) Then the equation (1) has a solution if and only if the relation

©) ) =0
holds for any solution & € E of the equation (4).

Proof. Since R(4) is closed, we have R(A)* = N(A*), where R(A)* is the
orthogonal complement of R(A) in X*; this is a well known fact (see for example
[1]). Further we have evidently N(A) = N(4*)nE and by the assumption
N(A*) = E we have N(4') = N(A™). This proves our theorem.

In the sequel we will formulate Fredholm theorems for the case A = I + T where
I is the identical operator in X and Te By(X) is compact.

Theorem 3. Let X be a Banach space, E = X *a total space which is also a Banach
space. Let Te Ly(X) be a compact operator and let E be preserved by the conjugate
operator T'. Then the following assertion holds:

Either
1. the equation

(6) x4+ Tx =%
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has in X only one solution for any X e X

or

I1. the equation
0 X+Tx=0
has r linearly independent solutions in X (r is an integer).
In the case 1. the equation
@® E+TE=2¢
has also only one solution in E for any £ € E and in the case I1. the equation
©) E+TE=0

admits r linearly independent solutions in E.

Moreover, the equation (6) has a solution in X if and only if &(%) = O for any
solution & € E of the equation (9) (and symmetrically (8) has a solution in E if and
only if &(x) = 0 for any solution x € X of the equation (7)).

Proof. First let us mention that this theorem is well known if we set £ = X ™.
Further it is known that under the present assumptions A = I + T€ By(X) and
ind A = 0. Moreover the operator T" € Ly(ZE) is also compact (cf. Theorem 7,4 from
CIIlin [3]). Hence ind A’ = 0 where A’ = I + T’ and all assumptions of Theorem 1
are fulfilled. This yields our theorem except the last part concerning the solvability
conditions for the equation (6) and (8).

The proof of this part we obtain from Theorem 2. For the case of a compact
Te Ly(X) it is known that R(A4) is closed, A = I + T and similarly R(4’) is closed
in 5, A’ =1 + T’ € Ly(E). It remains to prove that N(4*) < Z and N(4'") = »X.
By definition we have '

(10) N(A*) n E = N(4')

and therefore

(11) dim N(4’) < dim N(4%).
Similarly |

(12) N(A'*) nxX = N(4")

and

(13) dim N(4") < dim N(4'").
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Since % : X » E* is a monomorphism we have dim N(4") = dim N(4). Hence the
inequality (13) assumes the form

(14) dim N(4) < dim N(4'*).

Using (14), (11) and the equalities dim N(4) = dim N(4*), dim N(4’) = dim N(4'*)
which are consequences of the compactness of Te Ly(X), T’ € Ly(E) respectively we
obtain

dim N(A4) < dim N(4'*) = dim N(4’) < dim N(4*) = dim N(4)
and therefore

dim N(4) = dim N(4') = dim N(4'*) = dim N(4*).
These equalities together with (10) yields

dim (N(4*) n E) = dim N(4') = dim N(4%).
Hence N(A*) = E. Using (12) we obtain in the same way

dim (N(4'*) n xX) = dim N(4") = dim N(4) = dim N(4'*)
and also N(4'*) = »X.

Remark 2. Theorem 3 is a complete collection of Fredholm theorems for a com-
pact operator Te Ly(X), the only difference between it and the usual Fredholm
theorems being that it is sufficient to know a smaller total space of functionals
Z < X* and the conjugate operator acting in this space.

We conclude this note by an example in which Theorem 2 and 1 is used.

Let BV be the usual linear space of all real functions defined on [0, 1] with bounded
variation. If we set

[x]lav = [x(0)] + varg x

for x € BV then .| 5y is a norm and BV is a Banach space. A satisfactory description
of the conjugate space BV * of all continuous linear functionals on BV is notavailable.

We denote by S the set of all break functions w(f) from BV for which we have
lim w(t) = lim w(z) for all ¢ & (0, 1). The set S is closed in BV.
-

T=>t+

Let us form the quotient space BV/S. The elements of BV/S are denoted by capitals
and they are classes of functions such that their difference betongs to S. The canonical
mapping of BV into BV/S is denoted by y, i.e. for ¢ € BV we have Y(¢) = ¢ + S =
= @ e BV/S. The space BV/S forms a Banach space with the norm

(15) [®|sv/s = inf [o|sy = inf varge.
vip)=9o V(@)=0
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Let now @ € BV/S. We define for x € BV

(16) : o(x) = j :x(o do(1)

where y(¢) = ®. The integral in (16) is the Perron-Stieltjes integral. All integrals oc-
curring in the sequel are also Perron-Stieltjes integrals.

The relation (16) is independent of the choice of ¢ € BV with the property y(¢) = @
(see [3], p. 326) and &(x) from (16) is evidently a linear functional on BV. Since (x)
from (16) is independent of the choice of the representant of the class @ and the in-
equality

I 'x(6) dol)

0

< sup |x(2)| . varg @
te[0,1]

holds we have

I‘p(")| = "x"m" "‘b"m'/s
and the functional &(x) from (16) is continuous. The Banach space BV[S can be identi-
fied with a subspace in BV* which will be also denoted by BV/[S (BV/S = BV*).

If x € BV, x = 0 then there is a ¢ € BV/S such that ¢(x) # 0 (see Lemma 5,1 in
[3]). Hence BV/S is a total space in BV ™*.

For a given real function k(s, t) defined on [0, 1] x [0, 1] (k: [0, 1] x [0, 1] = R)
and a nondegenerate interval J = [a, b] x [¢, d] = [0, 1] x [0, 1] we set

m(J) = k(b, d) — k(b, ¢) — k(a, d) + k(a, c)
and define

v(k) = sup Xi]m(.l )|

where the supremum is taken over all finite systems of nonoverlapping intervals J;
in [0, 1] x [0, 1] (i.e. J{ n JJ = @ when i % j). The number v(k) is a kind of two-
dimensional variation (the so called Vitali variation) of the function k.

Let us suppose that k : [0, 1] x [0, ]1 - R is such a function that v(k) < + o0
and varg k(0, *) < +oo0. We define the operator

1
Tx = j () dyk(s, 1)
o
on BV. We have evidently Te Lo(BV) and by Theorem 3,1 from [3] the operator T
is compact. Hence ind (I + T) = 0.
If moreover varg k(+, 0) < + oo then for @ € BV/S; y(¢) = @ we have (cf. Lemma
2,2in[3])

or) = | ([ X0 4k ) a0(9) = | 04 l 1) () = T 82
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where

To =y ( f ) dcp(s)) , 8= ¥(0).

The operator T’ is the conjugate of T and evidently preserves the conjugate space
BV/[S. By theorem 5,1 from [3] T’ € By(Z) is compact. Hence ind (I + T’) = 0.

All the assumptions of Theorem 2 being satisfied we obtain easily the following

Theorem 4. Let k:[0,1] x [0,1] - R be such a function that v(k) < +o0,
varg k(0, ) < + oo, varg k(,, 0) < +oc0. Then either the equation

1
(17) 4@+jxm¢4&o=ﬂg
0
has in BV only one solution for any x € BV or the homogeneous equation
1
(18) x(s) + J. x(t) dk(s, 1) = 0
0

has r linearly independent solutions (r is an integer).
In the first case the equation

1
(19) , o(f) + '[ k(s, £) do(s) = @(1)
(1]
has a solution (not unique) for any @ € BV and in the second case the equation
1
(20) o(t) + 'f k(s, £) do(s) = 0
0

admits r solutions in BV which are independent over the subspace S in BV?).
Moreover the equation (17) has a solution in BV iff

ri(t) do(t) =0

for any solution @ € BV of the equation (20) and the equation (19) has a solution
in BV iff

1
Ix@dﬁ0=0
0
for any solution x € BV of the equation (18).

2) The functions @1, -+ @, € BV are linearly independent over the subspace S if the relation
¢ 9, + ... + ¢,0, € S(cy, ..., ¢, are real numbers) yields ¢; = ¢, = ... = ¢, = 0.
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