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Theorem 8. Let f, X, Y have the same meaning as in Theorem 7. Let A; be dense
in X. Then D, is of the first category in X.

Proof. Since A, is closed we have A; = X. In view of Theorem 7 A; — C; =
= X — C, = D, is of the first category. ’

Note. For metric spaces Theorem 8 is proved in [1].

Corollary. If f is cliquish then D, is of the first category.

Note. For metric spaces, Corollary follows from the mentioned theorem in [1].
It is formulated without proof in [2] for topological spaces.

In [2] we find also a theorem asserting that if f is cliquish then it is at most point-
wise discontinuous. Such a theorem for metric spaces X and Y where X is complete is
evidently a corollary of Theorem 8. However, in general such a theorem is not true
as the following example shows.

Example 2. (J. SMITAL.) Let X be the set of all rational numbers in (0, 1) with the
usual metric.

Put f(x) = 1/g for x = p/q. Then f is cliquish on X but D, = X.
Nevertheless, the following theorem may be proved.

Theorem 9. Let X be a topological space of the second category at each of its
points. Let f be cliquish on X. Then f is at most pointwise discontinuous.

Proof. In view of Theorem 8 D, is of the first category in X. If U = 0, U is open
in X then U = D, does not hold. Hence a point x, € U exists such that x, € C,.
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