

Werk

Label: Table of literature references

Jahr: 1974

PURL: https://resolver.sub.uni-goettingen.de/purl?31311157X_0099|log28

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

Theorem 8. Let f, X, Y have the same meaning as in Theorem 7. Let A_f be dense in X. Then D_f is of the first category in X.

Proof. Since A_f is closed we have $A_f = X$. In view of Theorem 7 $A_f - C_f = X - C_f = D_f$ is of the first category.

Note. For metric spaces Theorem 8 is proved in [1].

Corollary. If f is cliquish then D_f is of the first category.

Note. For metric spaces, Corollary follows from the mentioned theorem in [1]. It is formulated without proof in [2] for topological spaces.

In [2] we find also a theorem asserting that if f is cliquish then it is at most pointwise discontinuous. Such a theorem for metric spaces X and Y where X is complete is evidently a corollary of Theorem 8. However, in general such a theorem is not true as the following example shows.

Example 2. (J. SMÍTAL.) Let X be the set of all rational numbers in (0, 1) with the usual metric.

Put f(x) = 1/q for x = p/q. Then f is cliquish on X but $D_f = X$.

Nevertheless, the following theorem may be proved.

Theorem 9. Let X be a topological space of the second category at each of its points. Let f be cliquish on X. Then f is at most pointwise discontinuous.

Proof. In view of Theorem 8 D_f is of the first category in X. If $U \neq \emptyset$, U is open in X then $U \subset D_f$ does not hold. Hence a point $x_0 \in U$ exists such that $x_0 \in C_f$.

References

- [1] S. Marcus: Sur les fonctions quasicontinues au sens de S. Kempisty, Coll. Math. VIII (1961), 47-53.
- [2] H. Thielman: Types of Functions, Amer. Math. Monthly, 60 (1953), 156-161.
- [3] T. Šalát: Some generalizations of the notion of continuity and Denjoy property of functions. (To appear.)
- [4] S. Marcus: Sur les fonctions dérivées, intégrables au sens de Rieman et sur les dérivées partielles mixtes, Proc. Amer. Math. Soc., Vol. 9 (1958), 973-978.
- [5] W. W. Bledsoe: Neighborly functions, Proc. Amer. Math. Soc., 3 (1952), 114-115.
- [6] S. Marcus: Some remarks on real functions II, Rev. roum. math. pures et appl., 11 (1966), 911-916.
- [7] J. S. Lipiński T. Šalát: On the points of quasicontinuity and cliquishness of functions, Czechosl. Math. J., 21 (96), (1971), 484-490.
- [8] T. Šalát: On transfinite sequences of B measurable functions. (To appear).

Author's address: 816 31 Bratislava, Mlynská dolina (Katedra matematickej analýzy PF UK).