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ON QUASICONTINUOUS AND CLIQUISH FUNCTIONS

ANNA NEUBRUNNOVA, Bratislava

(Received December 30, 1971)

The notion of quasicontinuous and cliquish function will be used in the sense as it
was introduced in [1] or [2]. Thus a function defined on a topological space X and
assuming values in a topological space is said to be quasicontinuous at the point x € X
if for any neighbourhood U of the point x and any neighbourhood V of f(x) there is
an open set ) + G < U such that f (G) < V. Further, a function f defined on a topo-
logical space X and assuming values in a metric space Y with the metric g is said to
be cliquish at a point x € X if to any positive ¢ and any neighbourhood U of the point x
there is an open set @ + G < U such that o[ f(x,), f(x,)] < & for any two x,, x, € G.
A function f is said to be quasicontinuous (cliquish) if it is quasicontinuous (cliquish)
at each point x € X. _

The present paper consists of three parts. The first one concerns the pointwise
limits of transfinite sequences of quasicontinuous and cliquish functions. In the second
part, the mutual connections between the Denjoy property and the properties D,, D,
and L (the definitions see belov) are studied. The last part contains some assertions
connected with the results of S. Marcus ([1], [4]) and H. THIELMANN ([2]).

I

In this part (X, ¢) denotes a separable metric space and (Y, ¢') any metric space.
The functions which are dealt with are defined on X and assume values in Y. Let
be the first uncountable ordinal number. The transfinite sequence {a,},, of elements
of a metric space Y with the metric ¢’ is said to be convergent and have a limit aeY
if for each & > O there exists an ordinal number u < Q such that for each ¢, u <
< & < Q the inequality ¢'(a,, @) < & holds. ’

A transfinite sequence {f,},<q defined on aset T with the values in a metric space M
is said to be (pointwise) convergent to a function f defined on T'if {f,()}¢<q is conver-
gent to fy(f) for any te T.

Instead of the notation ¢'(a, b) for a, b € Y the notation |a — b| will be used.
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Theorem 1. Let {fe} (?,‘ < Q) be a transfinite sequence of quasicontinuous functions
pointwise converging to a function f. Then f is quasicontinuous.

Proof. Let f be not quasicontinuous at x, € X. Then thereisane > Oanda d > 0
such that for any nonempty open set G = K(x,, 6), (K(x,, 8) denotes the sphere with
the centre x, and the radius 6) there exists t € G with

¢)) |£(t) = f(xo)| 2 & -

Hence the set T of all ¢ for which (1) is true is dense in K(x,, &). Let S be a countable
dense subset of T. There is u < Q such that for & > pu

©) , 1) = £(x)
for any x € S U {x,}. The last fact easily follows from the definition of transfinite

convergence and the fact that S U {x,} is countable. (See e.g. [8], Lemma 1.)

Let &, > p be any fixed ordinal number. The quasicontinuity of f,, at x, implies
the existence of a nonempty open set § & U = K(xo, 6) such that |f,(x) — fe(x0)| <
< efor x € U. Evidently U n S % 0. For any t e U n S we have |f(xo) — feo(t)| <

< & But fy(xo) = f(xo) feo(t) = f(t) (in view of (2)), hence |f(xo) — f()| < &,

which is a contradiction to (1).

Note. It is clear from the above proof that the separability of X assumed in the
theorem may be substituded by local separability.

Theorem 2. Let {f.} (¢ < Q) be a transfinite sequence of cliquish functions
pointwise converging to a function f. Then f is cliquish.

Proof. Let f be not cliquish at a point x,. Then there are ¢ > 0, 6 > 0 such that
in any open set G, @ + G < K(x,, ) there is at least one pair y, z such that

(1) 76) - fG) z .

Let {G,}-, be a countable basis of open sets in K(xo, §). In each G, there is a pair
Y 2y such that

2 [f() = ()| 2 &

Consider the set S of all y,and z, (n = 1,2, 3,...).
The set S is countable, hence an ordinal number 1 < Q exists such that

(3 fdx) =f(x) forall xeS

whenever ¢ > u. Let &, > p. Since f,, is cliquish, there exists an open set U, @ +
# U < K(xo, 6) such that |f, (y) — fs(z)| < & for any pair y, z e U. There exists
G,, *+ 0 such that G,, = U. Hence |f;(ys,) — f2(245)| < € in contradiction to (2).
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II.

The definitions of the properties Dy, Dy, D, will be used as introduced in [3]
Let I, denote any interval on the real line. The function f : I, - R (R = (— 0, ©))
is said to have the Denjoy property D, ifforanya, beR,a < btheset{xel,:a <
< f(x) < b} is either empty or of positive Lebesgue measure (see [6]). Further, the
function f : I, — R is said to have the property D,(D,) if it has the property D,
for any interval I = I, which is closed (open) in I, i.e., if for any such interval and
any a,beR, a < b the set {xel:a < f(x) < b} is either empty or of positive
Lebesgue measure. The L-continuity (T. SALAT) is defined as follows. The function f
defined on an interval I is said to be L-continuous at a point x, € I if for any ¢ > 0,
5>0, the set {x:xe(xo — 6, Xo + &) nI; |f(x) — f(xo)| < &} is of positive
Lebesgue measure. In what follows the phrase ,,a function f has the property L at
a point x,’’ means that f is at x, L-continuous. The connections between the proper-
ties D; (i = 0, 1, 2) and L will be studied.

Theorem 3. Let f be defined on the interval I. Then the following implications are
true: Dy = L < D, = D, while the implications L = D, D, = D, do not hold.

Proof. Let f have the property D,;. Let x,€l, ¢ > 0, 6 > 0. Consider the set
{x:xeln(xo— 6, xo + 0); |[f(x) — f(x0)| < &}

There exists a closed interval K such that x, € K, K < (xo — 8, x, + d)and K < I.

Since {x:xeln(xo— 8, xo + 0); |f(x) — f(x0)| < &} 2 K n {x:|f(x) —
— f(xo)| < €} 3 x, the property D, yields |{x:x el n(xo — 8, xo + 8); |f(x) —
— f(xo)| < ¢| 2 |K n {x:|f(x) — f(x0)| <& >0 (where |E| denotes the outer
Lebesgue measure if E is a set). Hence f is a L-continuous at x,,.

Let f have the L-property at any point x€l. Let a < b and U < I be any open
interval. If there is not x, € U such that a < f(x,) < b then {x :a < f(x) < b} N
AU = §,hence |{x : a < f(x) < b} N U| = 0.]If there is such a point x, then choose
6 >0 and & > 0 such that (xo — 6, xo + 8) = U and a < f(xo) — & < f(xo) +
"+ & < b. Considering the L-continuity at x, we get

[{x:a <f(x)<b}nU|l 2
2 |{x:xe(xo — 8 xo + 8); |f(x) — f(xo)| < &} >0.

Thus f has the property D,.

Let f possess the property D,. Let x, € I. We shall prove the L-continuity at x,.
Lete>0,6>0.Put U= (xo— 0, xo + 6) N1, a = f(xo) — & b = f(xo) + &

Under the assumption the set {x eU :a < f(x) < b} is of positive Lebesgue
measure. Hence f possesses the property L.

The implication D, = D, was proved in [3], where also an example showing
that Dy = D, is not true was given. In [3] we find also an example showing that, the

implication D, = D, does not hold. The last fact together with what was proved
above shows that L = D, is not true.
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IIL

The following theorem is proved in [4]:

Let a real function f be a derivative and let it be almost everywhere continuous
on (a, b).

Then f is quasicontinuous on (a, b).

The proof of the quoted theorem does not use the fact that f is a derivative. It
uses only the property D,. Moreover, the proof works even if f is supposed only to
be L-continuous and quasicontinuous on (a, b). Thus the following theorem holds.

Theorem 4. Let f be almost everywhere continuous and L-continuous on (a, b).
Then f is quasicontinuous on (a, b).

Proof. Let a < xo < b, £ > 0. Put 4, = {x :|f(x) — f(xo)| < %¢}. Choose an
open interval I such that xo el < (a, b). The L-continuity implies |I n 4,| > 0.
Under the assumption f is almost everywhere continuous on (a, b), hence a number
& eI n A, exists such that f is at £ continuous. Hence an interval J < I containing &

as an interior point exists such that the oscillation of f on J is less then }e. Thus
forxeJ

€.

16) = fxo)l < 1) = S@)] + 1£0) = Sxo)] < 5 + 2
The quasicontinuity of f at x, is proved.

Let us introduce a usefull example of a quasicontinuous and L-continuous function.

Example 1. Let C be the Cantor discontinuum. Define f on <0, 1) as follows:
f(x)=1if xeC. If a,beC, (a,b) = €0,1) — C, put f(x) =1 for x;, = a +
+ (b — a) £ x = a + %(b — a) = x,. In the intervals (a, x,) and (x,, b) let f be
linear, f(a+) = f(b—) = 0 and such that it is continuous in (a, b).

It is clear that the quasicontinuity of f implies its L-continuity. A question arises
whether the converse of Theorem 4 is true, i.e., whether the quasicontinuity implies
the almost everywhere continuity. A slight modification of the above example shows
that the answer is negative. It is sufficient to consider a function defined on (0, 1>
as in Example 1, where the set C is substituded by a nowhere dense set of positive
measure which may be constructed in the usual way. An example of a quasicontinuous
function which is discontinuous at each point of a set C with |C| > 0 is obtained.

Theorem 5. Let f be defined on (a, b) and aproximately continuous at a point
Xo € (a, b). Then f is L-continuous at x,.

Proof. Let f be aproximately continuous at x,. Then a set H < (a, b) exists such
that x, € H, x, is a point of density of H and lim f(x) = f(x,).

x=X0
xeH
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Thus to & > 0 there exists a § > 0 such that |f(x) — f(xo)| < & for xe Hn
N (xo — 8, xo + 8) N (a, b). Since x, is a point of density for H the number & can
be chosen so that |[H n (xo — &, xo + ') N (a, b)| > 0 for any 6’ < 6. Then for
any 6" > 0

{x:xe(xo — 8", %o + 8") N (a, b); |f(x) — f(xo)] <&} =
> {x e(xo — 8% xo + 6*) N (a, b); |f(x) — f(xo)| <&} =
> {xe(xo — 8% xo + 6*) N H; |f(x) — f(xo)] < ¢},

where 6* = min (6, 6”). The last set is of positive measure.
The following theorem is a corollary of Theorems 4 and 5.

Theorem 6. If f is aproximately continuous and almost everywhere continuous
on (a, b), then it is quasicontinuous on (a, b).

Note. A direct proof of Theorem 6 is given in [4] (Theorem 5). Now we shalk
give some assertions closely related to the results of [1] and [2].

In what follows, the symbols 4., C,, D, denote the set of points of cliquishness,
continuity and discontinuity of the function f, respectively. A result proved in [1]
asserts that 4, — C, is of the first category in X. In [1], X is supposed to be a metric
space and the function f is defined on X with values in a metric space Y. We give
another proof of the mentioned theorem. We suppose X to be only a topological
space. The oscillation o/(x) of the function f defined on a topological space and
assuming the values in a metric space Y with the metric g is defined by

oflxo) = inf { sup o(f(). S0}

O(x0) x,ye0(xo

where O(x,) is any neighbourhood of x,. Then f is continuous at x, if and only if
05(xo) = 0.

Theorem 7. Let f be defined on a topological space X and assuming values in
a metric space Y with the metric ¢. Then A; — C, is a G, set of the first category
in X.

Proof.

o 1 ® 1
A, — Cy=A;,n D, = A, nkgl {x to(x) 2 ;} =k{=le, N {x tofx) 2 ;} .

Denote M, = A, n {x : o/(x) = 1/k}. It is sufficient to prove that M, is nowhere
dense. The set A, is closed (see [7]). Choose x € X. Let U be any neighbourhood of
the point x. If x ¢ A, then xe(X — A;) " U = U where (X — A4;) n U is open and
has an empty intersection with M,. If x € A, then in view of the cliquishness of f,
to any k and any neighbourhood U of the point x there exists an open set V< U
such that o(f(y,), f(v2)) < 1/2k for any y,, y, eV.

Hence o(y) < 1/2k < 1/k for any y e V. Hence V n M, = 0.
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