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AN INEQUALITY INVOLVING POSITIVE KERNELS

Ivo MAREK, Praha
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1L
A classical result concerning finite series of positive numbers (see [3], Theorem 328,
pp. 318 —319) can be formulated as follows.

Let n be a positive integer and let x = (¢y,...,&,), ;> 0, j=1,...,n. Let P
be a permutation matrix, i.e. let Px = y <> y; = x;, j = 1,..., n, where (iy, ..., i,)
is an ordered system of all of the integers 1,...,n. Then the relation*)

(1.1) (Px, z) = (Pe, e)
holds for every z = (4, ..., (), §; > 0,'j =1,..., n, for which
(1'2) Cléj = 13 1,...,”,

where x = (&y,...,&,), & >0, e=(1,...,1). Furthermore, if P is indecom-
posable,**) then the equality sign in (1.1) takes place if and only if x = z = ce,
¢ being a constant.

Using a result of G. Birkhoff [1] saying that every doubly stochastic matrix
T = (t;,) can be expressed as a convex combination of permutation matrices Py
N N
T=ZlkPk’ 0<)’k<19 ZAk:l’
k=1 k=1
we deduce from (1.1) that the relation

(1.3) . (Tx, z) = (Te, e)

*) Here we let (x,z) = i &y
j=1

**) See Remark 2 of the Appendix.
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holds for every couple of vectors x and z for which (1.2) is fulfilled. If T is inde-
composable then the equality sign in (1.3) takes place if and only if x = ce, ¢ being
a constant.

Let T be a matrix for which
n n
ﬂ":Zth:Zth, th;O, [lJ>0.
k=1 k=1

Then relation (1.3) remains to be valid also for this case.

Let T be an arbitrary nonnegative matrix and let r(T) be its spectral radius. Let u,
and v, be some nonnegative eigenvectors of T'and its transposed matrix T’ respectively
corresponding to the spectral radius: Tuo = r(T)uy, T'vg = HT) vy, uy =
= W1y e s Ma)s Vo = (Vs 05 V)

We easily verify that for the matrix U = (uy), where uj, = v;tpm + 60y, k, j =
=1,..,n, 6 >0, the following relations

n n
Yup=rT)vm+ =73 u
-] k=1

hold. Thus we have that
(1.4 (Ux, z) 2 (Ue, €)

holds for every couple x and z for which (1.2) is fulfilled. But (1.4) is equivalent
to the relation

Ma

kZl [Vjtjk'lkijk + 86,¢,0] = '21 kzl[vjtjknk of: 55_,'1:]
= j= =

Jj=1

and, since ¢ is arbitrary, we obtain
n n n n
(1.5) Y Xt 2 Y, X Vitudi-
j=1k=1 j=1 k=1

The procedure just shown is a slightly modified procedure used by M. Fiedler [2].
We summarize the previous results in the following theorem.

Theorem 1. Let T = (t;,) be an n x n matrix with nonnegative entries ty, 1 < j,
k < n. Let u, and v, be any nonnegative eigenvectors of T and its transposed T’
respectively corresponding to the spectral radius r(T). Let x be an arbitrary vector
with positive coordinates and z let be such that (1.2) holds. Then the relation

(16) (Vi 2) 2 H(T) (4or v0)

holds, where V = (v;) and
Vjg = Vilptk, Yo = ("1’ ceey nn) sy Up = (vls saey V,,) .
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If moreover T is indecomposable then the equality sign in (1.6) takes place if and
only if x = ce, ¢ being a constant.

We note that only the last assertion has to be proved. We shall not do this now
because our aim is to prove a slightly more general result in Section 2.

Remark. Note that for T = P, where P is a permutation matrix, the relation (1.6)
is identical (1.1) because u, = v, = e in this case.

2.

Let u be a nonnegative o-additive regular measure on a c-algebra MM of subsets
of Q, where Q is a closed bounded subset of a Euclidean space 6”. Let ¥ = £*(Q, p)
be the Banach space of classes of y-measurable p-equivalent real-valued functions
on Q with the inner product

([u], [2]) = Lu@ ofs) du(s)

and the norm ||[u]|? = [u], [u]), where u and v are any representatives for [u]
and [v] in £*(Q, u) respectively. In the following we shall not distinguish the
notation for classes and their representatives.

Let 7 = J (s, t) be a kernel on Q. We set Tx = y if y(s) = [ T (s, t) x() dp(z).
The following theorem is a consequence of a well known result due to M. G. Krein
and M. A. Rutman [4].

Theorem 2. Let T be a compact linear operator mapping % into % having the
property that x € Y, x(s) 2 0, p-almost everywhere in Q (p-a.e.) implies that y(s) = 0
p-a.e. in Q, where y = Tx. If dim % is infinite then let the spectral radius r(T) =
= max {0, sup [|4| : A an eigenvalue of T]} be positive. Then there exist eigen-
functions uq and vy of T and its adjoint T* respectively corresponding to r(T) and
we have that uy(s) 2 0 and vy(s) 2 0, p-a.e. in Q:

Tuo = r(T) Up , T*Uo = T(T) Vo .

Definition. We call the kernel 7 = J(s, 1), I(s,£) 2 0 pu x p-ae. in Q x Q
indecomposable if for every couple of nonnegative u a.e. functions u and v, u % 0,
v % 0, there is an iteration T? such that (7?4, v) > 0 [6]. We also call T indecom-
posable, or J -indecomposable, where " = {ue ¥ :u(s) = 0 p-a.e.}.

Remark. If T in Theorem 2 is an indecomposable integral operator on £*(2, p),
then u, and v, are positive p-a.e. in Q and up to a multiple constant uniquely

determined [7].
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Definition. We say that kernel 7~ = (s, 1) has property (B)if y = Tx is a bounded
function whenever x € £*(Q, p).

Definition. We say the kernel 7 = J7(s, t), s, t € Q, satisfies condition (C) if for
every ¢ > 0 there is a continuous on Q x Q kernel 7, = J (s, t) such that

f 2 U' n|9'(s, ) = T{s 1)’ d#(‘)] du(s) < €.

Our generalization of Theorem 1 is as follows.

Theorem 3. Let 7 = 7 (s, t) be a kernel having property (C). Let x be any p-
measurable u-a.e. positive function on Q. Then we have

2.1) LLg-(s, 1) v(s) wol1) -’% du(s) du(f) = n(T) Luo(s) o3 e
where uy and v, satisfy
(22) J’ T(s, 1) uo(t) du(t) = (T) ue(s), 0% upe LR, ) () 2 0 prave. in @,

J‘ T (s, 1) vo(s) du(s) = {T)vo(t), 0% vge LR, 1), vo(s) 20 p-ae. inQ,

for r(T) > 0 and uy 2 0, vy = 0 are quite arbitrary for r(T) = 0.
If moreover T is indecomposable and has property (B), then the equality sign
in (2.1) takes place if and only if x(s) = constant p-a.e. in Q.

Remarks. Because of our assumption (C) and because of the density of the set
of all continuous functions on Q in £*(Q, p) it is easy to see that it is enough to prove
the first part of Theorem 3 concerning the inequality (2.1) only for continuous kernels
and continuous functions x’s.

Obviously the relation (2.1) holds trivially whenever r{T) = 0 and thus there
is nothing to be proved.

Since (T) = 1, and u, = v, = e, where ¢(s) = 1 p-a.e. in Q for T being defined
by a doubly stochastic kernel 7, i.e. by kernel 7 for which

5] 700 = 25 [ 7094 = 49,

wQ) Ja
the relation (2.1) turns to be expressed as
(22 (Tx,z) = (Te, ¢),
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where

(2.3) 2(s) =

p-a.e. in Q.

()

Proof of Theorem 3. Since the integrand in (2.1) is nonnegative there is nothing
to prove if the integral on the left hand side diverges. Hence, let us assume the left
hand side in (2.1) to be finite. According to the previous remark we may assume that
J is a continuous in Q x Q kernel and x is a continuous function in Q.

First let us assume that  is a doubly stochastic kernel. According to the mean
value theorem we can find disjoint subsets 2; = Q in such a way to have

(2.4) j NECELTCLOE >: 3 705 0 @) ),

where 5;€ Q; and t, e @, j = 1,...,N, N being a positive integer.
Obviously we have

N N
(2.5) T T =2 Ty = My
k=1 k=1
where
T = T (55 t) W(Q) u(R), n; = p(K;)>0.
According to (2.5) and (1.5) we have that

(2:6) i ﬁ’tjkg = i itik

holds for every vector x = (&,...,&,), §;>0,j=1,...,N.
Let us choose ¢ > 0 arbitrary. Then we can find N large enough to have

[Lfreaigoosio-z 2ol

According to (2.6) it follows that
J;) J;ﬂ' (s, 7) 3:;((% dpu(t) du(s) ;él kélt =
- J ) '[nﬂ'(s, £) du(f) dus) — & = L j als) du() — e

Since ¢ > 0 is arbitrary, we get that

L 75,9 28 )du(‘) auls) = j RIECLTC

and this is equivalent to (2.1).
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Further, we assume that J satisfies the following conditions

27) j (5, ) = '[ 765 dH) = ofs), s€2,

where o is a nonnegative continuous function. It is easy to find a positive constant §
to make the following expression positive

B(s) =6 — J'nﬂ'(s, t)du(t) =6 — J‘ﬂﬁ'(t, s)du(t) =6 — afs), seQ.

Note that B(s) > 0, or more precisely, inf f(s) > 0. We define an operator Z by
setting

(28) @) = 5[ 7603080 + 306 59, s<e.
It is easy to verify that for s e Q‘
(2e) (s) = %[,B(s) + f 705 du(t)] - %[ﬁ(s) ; j 709 du(t)]: s).

Similarly as in the case of doubly stochastic kernels we can show that the following
relation holds

f (9 (229 au() 2 j ) [2e] () (),
where z(s) = 1/x(s), or else,
29) L _[ 705 % du(®) du(s) 2 L (5.1 ) ).

This is the required relation for the case considered.
Finally, let us consider a general continuous kernel . Let us set

U(s, t) = vo(s) T(s, ) uo(t), s,teQ.
Then

j (s ) 4u() = o(T) () ) = J' () ), sen.

Thus the kernel U satisfies (2.7) with a(s) = r(T) uo(s) ve(s) = 0. By virtue of (2.9)
we have that

I j U(s, ) X au(t) du(s) 2 J' J U(s, 1) du(t) du(s)
2la x(1) ala
and this is equivalent to the required relation (2.1) which was to be proved.
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To finish the proof of Theorem 3 we have to examine the case of an indecom-
posable operator T. We shall use the same machinery as before.

Let 7 = J (s, 1) be a doubly stochastic kernel. We assume that

e | Lf(s, 0 % aul) du(s) = j ) j 7(5,) ) du() = j ) Ldu(') auls).

or else

(V.TV;'e,e) (Te,e) _ 1
(e, €) (e, €) ’

where e(s) = 1p-a.e. in Q and
(2.11) Ve = v o(s) = x(s)u(s), seQ, x,0,ueL*(Qp).

Since x € £%(9Q, p) is up to positivity quite arbitrary, we also have that (assuming
we) =1)

1 S (V7' TVee, ) = (V,T*V; e, ¢),
where T* is the adjoint of T. Obviously, [T + T*] is stochastic and it follows that
VLT + T*]V; e, e) 2 ([T + T*] e, e) = 3(T+ T*) = 1.

According to our assumptions T + T* is compact and symmetric. Thus,

(. )

This fact together with # -indecomposability of T+ T* according to the definition
of V, implies that y, = V, 'e being an eigenvector of T + T* corresponding to
(T + T*) is a multiple of e : ¥ ‘e = ce, ¢ > 0. In other words, x(s) = const. p-a.e.
in Q, and this was to be proved.

T+ T*) =max{w tue L3, p), (u,0) £ 0,0 > 0}.

Further let 7 satisfy (2.7) with some positive function a = «(s). Then for the
operator V, defined in (2.11) we have with appropriate f§ that

j (9 [22] 9 4u(9) = j o) [22] () ),
where Z is defined by (2.8). We deduce that
Wz + 241V e, ) 2 H(Z + Z¥) e,e) =1 =(Z + Z%) = |Z + Z¥| .

Since the null space W(Z + Z*) = {ve L2, p) : (Z + Z*¥)v — |Z + Z*| v = 0}
is one dimensional (see [7] and also the Appendix), we conclude that V; e being
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an eigenfunction of (Z + Z*) corresponding to the eigenvalue ||Z + Z*|| is a
multiple of e: ¥V 'e = ce, ¢ > 0. Thus, the assertion is proved in this case too.

We conclude the”proof of Theorem 3 by observing that for a general indecom-
posable kernel I = I (s, t) the kernel T = F (s, t) = vo(s) T (s, t) uy(t) satisfies
(2.7) and u, and v, are positive and uniquely determined up to a multiple factor.
Thus from

(Ve TV e, €) = (Tye, €),
where

Tyu = v<os) = Jﬂfl(s, Hu(f)du(t), seQq,

the required relation x(s) = constant p-a.e. in Q follows. This completes the proof
of Theorem 3.

The relation (2.13) contained in the following Corollary is essentially used in some
applications concerning cone preserving operators (see [2, 6]).

Corollary. Let T be an integral operator whose kernel I = (s, t) satisfies
property (C). Let uy and v, be some nonnegative eigenfunctions of T and its adjoint
T* respectively corresponding to the spectral radius r(T). Then we have

(2.13) f ) j 6 ) ot ls) dn() ) 2 f ) f 705 ) ) () () ).

If moreover I is indecomposable and satisfies condition (B) then equality sign
in (2.13) takes place if and only if uy(s) = c vo(s) p-a.e. in Q with some ¢ > 0.

Proof. According to the indecomposability of 4 we know that u, and v, are
positive p-a.e. in Q. We then put x(s) = uo(s)/ve(s) and apply Theorem 3. This
completes the proof.

3.

With some minor changes the results of Section 2 can be generalized to £7(2, p)
spaces with p € (1, + o). We formulate a particular result in this direction concerning
bounded kernels.

Let pe(1, +o0)and 1/p + 1/p* = 1. Let 7 = Js, t) be a bounded nonnegative
kernel on Q x Q. Let u, be an eigenfunction of J and v, an eigenfunction of the
transposed kernel 7*(s, t) = J(1,5), 5,t€ Q.

Wecall I = 7 (s, t) to satisfy condition (C,) if for every &¢ > 0 there is a continuous
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kernel 7, = 7 (s, t) such that

[[[17600 = 7ienr o] "ou) < o.

We say that a kernel 7 = J(s, t) is indecomposable if for any couple u € LP(Q, )
and ve L?(Q, u), u £ 0, v % 0, there is a positive integer p = p(u, v) such that

< f j T(6t2) o Tty 1,) ols) u(t,) dults) .. du(t,) dus).
a Ja '
Theorem 4. With the previous notation we have the following relation

(3.1) ‘[ J (s, 1) vo(s) ) 8 du(t) du(s) = o(T) J'nuo(s) 0o(s) duld),

where x is any p-measurable positive function on Q. If moreover, I is indecom-
posable and such that Tu is bounded for ue £?(Q, ) and x is bounded, then
equality sign in (3.1) takes place if and only if x(s) = constant p-a.e. in Q.

4. Appendix. We shall prove an assertion a corollary of which was already used
in the proof of a part of the main result.

Let V be defined as follows.

Vx = y < y(s) = f(s) x(s), xe L%, p) and fe L=(Q, u), f(s) = 0 p-a.e. in Q.
Set #*(Q) instead of L*(Q, p).

Theorem 5. Let U be a bounded operator on £*(Q) mapping p-a.e. nonnegative
functions into p-a.e. nonnegative ones. Let x,€ £*(Q) be an eigenvector of U.
Let x, have the property that xo(s) 2 B(€) Xaw(s) p-a.e., where

Qe) = {te Q:f(f) > supess f — &}

for sufficiently small € > 0 and where 3gq, is the characteristic function of Q(e)
and P(e) is a positive constant. Furthermore, let for every p-a.e. nonnegative
ve L*(Q),v % 0, there be an «(v) > 0 such that

(4.1) (Uv) (s) 2 ov) xo(s) p-a.e.
Let p(Q(¢)) > 0 for all sufficiently small ¢ > 0. Then

r(T) > V) = supess f,
where T=U + V.

Proof. We may assume that u(Q(e)) < + oo.
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Let ¢ > r(T). It is easy to see that for every x € £*(Q), x 2 0 p-a.e. we have that
[Re. D51 () 2 [UR@ U)s1() + [R@ V) 5] () wae

where R(g, 4) = (oI — A)~* and A is a bounded linear operator on £2(, y) and
I is the identity operator. It follows that
R(e, T) Xaw = R(e, U) Ufae + R(e, V) Xae) >
1 % & 1
—rU)"°  e—rV)+e
> [“(Xn(e)) ﬂ(B) + 1
“Le-rU) o-r(V)+

According to Theorem 6.2 in [4] we conclude that

> “(xa(z)) p Xa@ =

s] XaeE) = ?(Q) Xae) *

n(R(e, T)) = 7(e) -
Obviously, 1
R V) = — )
and
- —— = 1 =
TS e - Ale - (V)1 [e — V) + ]

x {a(Xaw) Be) [e = r(V)]* + & a(xaw) B() [e — (V)] = ele = n(U)]} .

We see that

1
e) — >0
e— V)
for ¢ sufficiently large. This means that
n(R(e, T)) > r(R(e, V)
and since
1
R o, T)) =
R T) = =
we deduce that
1 1

>
¢e—1r(T) e¢—rv)
and this implies the required result. Theorem 5 is prbved.

Remark 1. If U in Theorem 5 is compact then T = U + V is a Radon - Nikolskii
operator [5]. Thus, each spectral point A for which [A| = 1(T)is a pole of the resolvent
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