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1. INTRODUCTION

Given a square matrix A, assign to it the directed valuated graph G(4) in the
natural way. If some elements of A are zero then many terms of det A vanish, of
course. In this paper, non-zero terms of principal and “almost principal’’ minors of
the matrix 4 and of matrices obtained by modifying its diagonal are described by
means of certain classes of subgraphs of G(A). This theory makes it possible to gener-
ate and to enumerate certain subgraphs of a given directed or non-directed graph
and yields inequalities concerning minors of matrices of a certain kind. Some general-
izations of results of the papers [1], [2] and [3] are given. Another application con-
sists in expressing the solution of the system of linear equations and the coefficients
of the characteristic polynomial of a matrix 4 and of its modifications by means of
subgraphs of G(4). These formulae are well-known and frequently used in the field
of electrical networks analysis (v. [3]).

2. PRELIMINARIES

Common concepts and terms from matrix and graph theory are used tacitly.

Let n be an integer. Denote N = {1, 2, ..., n}. Let F be a set. Denote by |F| the
cardinality of F.

Let A = (ay) be an n x n matrix and @ = K € N, § + L< N. Denote by Ag;
the submatrix obtained from A by deleting the rows and columns with indices from
N — K and N — L, respectively. Denote by G(4) the directed valuated graph con-
sisting of vertices 1,2, ..., n and edges (i, k) for each a; =+ 0. Each edge (i, k) is
assigned the value a,. By diag(dy, d, ..., d,) denote the n x n matrix M = (my)
such that m;; = d, for each i € N and all the off-diagonal elements m,, are zero. By
D(A) denote the matrix diag (Y a4, Y. @24 --.» 2. am). By I is denoted the identity

k*¥1  k*2 k*n

matrix of the appropriate order.
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Regard now det B as a polynomial in the n? elements b,, of B. Let r, se N. It is
easy to see that

(_1)!'"‘8 det BN—{r},N—(s) = aa det B .

rs

Suppose now r,se V= N, r % s. Put

mV,r,s)=r+s+|{jeN-V|r<j<s}| for r<s,
m(V,r,s)=m(V,s,1) for s<r.

It is easy to see that
(2.1) det(B-I)=(-1)"+ Y (-1 "ldetByy,
BFWEN

and more generally
(2.2) det(B—1I)yy = (-1 + ¥ (=1)"I="ldet By, .
GFWsV

Differentiation of (2.2) with respect to b,, yields

(2.3)

(_ l)m(V,r,s) det (B _ I)V—{r),V—{s) = ZW V(_I)IVI+IW|+m(W,r,s) det BW—(r),W—(s) .
r,seW S

Let G be a directed graph of vertices 1, 2, ..., n and V £ N. By G, denote the sub-
graph of G the vertex set of which is ¥ and the edges of which are all the edges of G
connecting two vertices from V. By C(G) (resp. D(G)) denote the class of all the span-
ning subgraphs (resp. of all the subgraphs) of G such that each component of them is
a cycle (in other words, a directed circuit). Let, j, k€N, j % k. By P;(G) (resp.
Q,(G)) denote the class of all the spanning subgraphs (resp. of all the subgraphs) of G
such that one component of each of them is a path from j to k, the other components
being cycles. Evidently, from each vertex and into each vertex of a subgraph from
C(G) or D(G) leads exactly one edge. The same is true for all vertices of subgraphs
from P;(G) and Q;(G) with the exception of j and k. By adding the edge (k, j)
(provided that it is contained in G) to a subgraph from P(G) (resp. Q;(G)) a sub-
graph from C(G) (resp. D(G)) is obtained. The empty subgraph (both the vertex and
the edge sets are empty) belongs to D(G). A root of a graph is a vertex from which no
edge leads. By L(G) denote the class of all the spanning subgraphs of G such that each
component of them is either a tree with exactly one root or a graph obtained from
a tree with exactly one root r by adding the edge (r, r). Intuitively, each edge of a
component of a subgraph from L(G) is directed “towards’ the root or the loop. Let
K = N. By Lg(G) (resp. L,(G)) denote the subclass of L(G) consisting of all the
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subgraphs such that the root set of each of them is K (resp. contains K). In this nota-
tion, L(G) = L,(G). Let r, s e N. By Lg(G) (resp. L{,(G)) denote the subclass of
Lx(G) (resp. Lx)(G)) consisting of all the subgraphs such that each of them contains
the vertices r, s in the same component.

Let H be a subgraph of the graph G(A) introduced above. Denote by n(H), ¢(H)
and o(H) the product of edge values, the number of components and the number of
roots, respectively, of H. Let K(G(A)) be a class of subgraphs of G(4). Denote

oK(G(4)) = > (-1)re®*@n(H),

HeK(G(A))

n being the number of vertices of G(A).

I. EXPANSIONS OF MINORS

Throughout this chapter, assume that A = (ay) is an n X n matrix over an in-
tegral domain, and that @ = V < N. Wherever the symbols R, S, r and s appear,
it is assumed that r,se VS N, r +s and the following notation is wused:
R=V-{r}, S=V-{s}, m(R,S) = m(V, r,s) (the function on the right side
was introduced above). '

3.A

(kX)) det 4 = &(C(G(4))).

Proof. Assign to each non-zero term ay;a,;, ... a,;, of det A a subgraph H
consisting of edges (1, iy), (2, i3), ..., (n, i,) of the graph G(A4). This is one-to-one
correspondence between non-zero terms of det A and subgraphs from C(G(4)).
Moreover,

sgn {iy, iz .vu i} = (— 1) 70

Consequently,
detA= Y (=1y"® n(H) = &(C(G(A4))).
HeC(G(A))
(32  det dyy = 9(C(Gy(4))) .

Proof. Observe that G,(4) = G(4yy) and apply (3.1).
33 (=1)"®5) det Aps = —D(P,(Gy(A4))).
Proof. Differentiate (3.2) with respect to a,,.
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4. A—1
@) det (4 — I) = &(D(G(A))) .
Proof. Substitute (3.2) into (2.1). The term (—1)" corresponds to the empty
subgraph.
42 det (4 — I),, = &(D(Gy(4))) .
Proof. Observe that (4 — I),, = Ay, — I and apply (4.1).

4.3) (= 1)"®S det (4 — I)zs = —B(Q,(Gy(4)) .

Proof. Differentiate (4.2) with respect to a,,.

5. A—D(A)

G.1) det (4 — D(4)) = ®(Ly(G(4))) .

Proof. If all the diagonal elements of A are zero then Ly(G(4)) = @ and so
®(Ly(G(A4))) = 0. Further, the matrix 4 — D(A) is singular since all its row sums are
zero. Thus (5.1) is true in this case. :

Suppose now that there exists an w € N such that a,,,, & 0. If n = 1 or if 4 is the
zero matrix then (5.1) is true. Suppose than n > 1 and that (5.1) is true for each square
matrix of order less than n and for each n x n matrix the number of non-zero ele-
ments of which is less than that of A.

Suppose first that a,,, = 0 for each z € N — {w}. This implies
det (A == D(A)) = Qyw det (A s D(A))N'-(w),N—(w) = Qyw det (B - D(B))
where
B = AN—{w},N—(w) - dlag (a1w3 Aoy ooy anw)N—{w},N-(w) .

By the induction hypothesis,

det (B — D(B)) = 9(Ly(G(B) .
It is easy to see that

D(Ly(G(B))) = H(Ly(Gr-w(4)) — P(Lpy(G(A))) -
Consequently,

det (4 — D(4)) = ay, B(Ly(Gy-n(4)) — aww B(L0y(G(4))) = B(Ly(G(4))) -

It remains to consider the case that a,, # 0 for some ze€ N — {w}. Denote by
4’ (resp. A”) the matrix obtained from 4 by replacing the element a,,, (resp. the ele-
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ments a,,, for each ze N — {w}) by zero. By the induction hypothesis,
. det(d - D(4Y) = B(L,(G(4)),
det (4" — D(47) = BL,(G(AY)-

It is easy to see that
Ly(G(4)) = Lg(G(4")) v Ly(G(4") ,

the sets on the right side being disjoint. Hence
det (A — D(A)) = det (4’ — D(A4)) + det (4" — D(A")) = ®(Ly(G(A)))

which completes the proof.

(52) det (A - D(A))VV = (_1)"_IV| ¢(LN~V(G(A))) 0

Proof. Denote by C = (c) the n x n matrix such that C,y = 4,y and ¢, = &y
foreach ie N — ¥, ke N. According to (5.1),

det (4 — D(A))yy = det (C — D(C)) = H(Ly(G(C))) -
It is easy to see that
LB(G(C)) = LN—V(G(A)) c
(53 (=1)m®9 det (A — D(A))rs = (—1)""1® &(LF_z(G(A4))) -

Proof. Denote by C = (cy) the n x n matrix such that Crn-tmn = An—y. 8
¢, = ¢,s=1andc,, =0 for each we N — {r, s}. According to (5.2),

(—1)™®5 det (4 — D(A))gs = det (C — D(C))yy = (= 1)~ &(Ly_(G(C))) .

Denote by LY% ,(G(C)), Ly*,(G(C)) and L}>",(G(C)) the subclass of Ly _(G(C)) con-
sisting of all the subgraphs such that none of them contains a path between r and s,
each of them contains a path from r to s and each of them contains a path from s to r,
respectively. It is easy to see that

Ly-/{(6(C)) = LY (6(C)) + Ly(G(C)) + Li(6(C)).
the sets on the rigth side beipg disjoint, and
(L2 AG(C)) = —PLHEA(G(A)
B(LY(G(C)) = P(LYZR(G(A4))) »

B(LN(G(C)) = —D(Ly-x(G(4))) -
Consequently,

(=27~ B(Ln-(G(O)) = (= 171N HLF_K(G(A)) -
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6. A—D(A)—I
6.1) det (4 — D(A) — I) = &(L(G(A))).

Proof. Set B = A — D(A) and substitute (5.2) into (2.1). The term (—1)" corre-
sponds to the subgraph of n roots, i.e. to the subgraph consisting of n isolated vertices.

(62) det (4 — D(A) — Iyy = (=1 &(Ley_y,(G(4))) .

Proof. Set B = A — D(A) and substitute (5.2) into (2.2).
63) (—1)"®Ddet (A — D(A) — Drs = (—1)""I® &(L{ - )(G(4))) .
Proof. Set B = A — D(A) and substitute (5.3) into (2.3).

* * *

Principal minors M, and “almost principal’’ ones Mg of certain modifications M
of a matrix A were dealt with in this chapter. The question about the other minors
suggests itself. Indeed, it is not difficult to derive analogous expansions of them using
analogous methods. However, these expansions lose the combinatorial character,
i.e. the signs of their terms depend not merely on the appearance of corresponding
subgraphs but also on the order of jts vertices. For example, in the case n = 5,
R ={1,2,3},S = {3, 4, 5}, the terms a,5a,,a35 and a,,a34a,5 of det (A — D(4))gs,
which correspond to the subgraphs

1 1
) 4
3 3

of G(A), have opposite signs.

69



II. APPLICATIONS

In this chapter, some applications of the results of the Chapter I are shown.

7. SYSTEMS OF LINEAR EQUATIONS

Let A be an n x n matrix and b be an n-dimensional column vector. Consider the
system of linear algebraic equations Ax = b.

It holds
xk det A = Z (_ 1)i+kbi det AN—(i},N—{k}
i=1

for each k € N. According to (3.3) and (3.2),

x.det 4 = — i;kb,- &(P,(G(A))) + by, B(C(Gy_(4))) -

2=(50)

where o is the n-dimensional zero row vector. It is easy to rewrite the last expansion
into the form

Put

x,det A = (D(P k.on+ 1(G(B))) )

the expansion of det A being given by (31)
Analogously,
xk det (A - I) = ¢(Q,"n+ I(G(B))) ’
xi det (4 — D(4) = B(LEY(G(B))
and «
xi det (4 — D(4) — I) = S(LEL(G(B))
for each k e N. .

Such a formulae are frequently used in electrical engineering. They make it possible
to read the solution of certain systems of linear equations which arise in network
analysis immediately from the network diagram.

8. COEFFICIENTS OF CHARACTERISTIC POLYNOMIALS

Let A be a n x n matrix. The following expression of the coefficients of its char-
acteristic polynomial

n
det(4 — xI) =Y ax""*
t=0
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is well known:
a, =(-1y"* det Ay froeach teN,

TEN T=t
Qg = (—‘1)" .
According to (3.2), for each te N,

(5.1 a = (=177t % 9(C(G{A)) = HD(G(4)

where by D, (G(4))) the subclass of D(G(A)) consisting of all the subgraphs of exactly
t vertices is denoted. )

Further, according to (5.2), it holds for the coefficients of the characteristic poly-
nomial

det(4 — D(A) — xI) = ex""*
t=0

of the matrix 4 — D(A), for each te N,

(82 e=(=1"" ¥ (=1 WLy-o(G(4)) = 9(,-L(G(4))

TEN |T|=t

where by ,L(G(A4))) the subclass of L(G(A)) consisting of all the subgraphs of exactly
z roots is denoted. '

Consider now the characteristic polynomial

det(A —I—xI)=Y) bx""*
f=0

of the matrix A — I. According to (2.2), foreach te N,

b,=(-1y"" Y det(d—Ipr= (-1)""TE§TH[(—1)' +

TEN [T|=t
+ Y (—1)"Wldet Agy] =
PFWET
=(-1) (’:) +‘§1(_1),.-w ('; —_ ‘:’) WsN;W|=wdet A,, =w§o ('; : ?) Bogn
Thus, according to (8.1),
(83 b= 3 (%2 %) @ou(6a)

for each te N.
Analogously, it works out for the coefficients of the characteristic polynomial

»
det(A —D(A) —I —xI) =Y dx""*
=)
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of the matrix A — D(4) — I, according to (8.2),

t
=y

0

()10

for each te N.

9. GENERATION OF SUBGRAPHS

Let G be a finite directed graph. Observe that all its subgraphs of any class defined
in the Preliminaries can be constructed in the following way. Order the vertices of G
and assign to each edge (i, k) of G a variable x;. Further, construct the matrix X
such that G = G(X). Then the subgraphs of such a class correspond with the terms of

the appropriate minor (which is regarded as a polynomial in x) of the appropriate
modification of the matrix X.

For example, let G be the following graph

R

and construct all the subgraphs of the class L(R)(G). Number the vertices from left
to right, then

X131 X12 X33 0

0 0 x,3 x4
0 0 0 xj4
0 x4 0 x44

X =

Further,
det (X — D(X)){1,3,4),(1,3,4> =

X131 — X12 — X33 Xi13 0
= det 0 —X34 X34 =
0 0 X4q — X4

= —X11X34%44 + X11X34X42 + X12X34%X44 — X12X34%X42 + X13X34X44 —
— X13X34%X42 -
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The corresponding subgraphs are
; /O ”7
| /O /7

10. PROOF TECHNIQUES

The expansions of minors given in the Chapter I can be used to prove some rela-
tions concerning minors. For example, prove the following well-known formula.

Letn>3,r,seN, r % sand A = (ay) be an n x n matrix. Then
(—1)r+s+1 det Ay_ (g, n-(s) = dsp det Ay N -(r,) —

— Y agagdet Ay_g, g N-(is —
ieN—{r,s}

N—{i,r,s},N—{k,r,
- Z (_l)m( (hrshN = ”Dairask det AN (i p sy N=thors) *
l,keN—lfr,s)
i+
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Proof. Denote by P.(G(A)) (resp. P{Y(G(A))) the subclass of the class P,,(G(4))
consisting of all the subgraphs such that the path component of each is of length I
(resp. at least ). According to (3.3),

(—1)y*s*tdet Ay gy v-(9 = P(Ps(G(4))) =
= &(P;(G(4))) + @(P3(G(4))) + (PF(G(4))) -

Further,
&(P,(G(4))) = a,, (C(Gy-r,9(4)) = a, det Ay g x-(r.p»
¢(P:P(G(A))) = - . NZ( )asiair ¢(C(GN—(i,r,i)(A))) =
=— Y aga,det Ay_, o N-(irs)
ieN —{r,s}
and
¢(P - )(G(A))) = Z asiak,tb(P ik(GN—(r,s) (4)) =

i,keN—{r,s} i¥k

_ N={ir,s), N=(k,r,s)
= == ¥h agity(— 1N T N det Ay g - ors -
ikeN—{r,s} ik

* * *

In the rest, formulae of the section 5 are applied. Observe that each subgraph
H € L(G) contains exactly n — o(H) edges (i, k) such that i # k, n being the number
of vertices of G. This makes it possible to eliminate the factor (—1)"~%¢“) in the
terms of expansions of minos of the matrix 4 — D(A4) by changing the signs of all
the off-diagonal elements of A4.

For formal reasons, extend now the symbols R, S defined in the introduction to
the Chapter I, to the case @ = R = S < N. Then put m(R, S) = 0, r = s = 1. This
makes it possible to write the formulae (5.1)—(5.3) in the universal form (5.3).

Given an n x n matrix 4 = (a,), denote by R(4) = (r,) the n x n matrix such
that r;; = a;; and ry, = —ay for each i, k e N, i + k. Then it holds for the elements

Sik Of the matl'ix S(A) = R(A) o D(R(A)) that S” — Z a,-j and Sik': _aik fOl‘ eaCh
Jj=1

ieN,keN,i # k. Further, S(S(4)) = A and the formula (5.3) can be written in the
form

(*)  (=Dm®D det (S(d)rs = (-1 M HLY_(GA) = ¥  n(H).

HeL™*y - r(G(4))

11. ENUMERATION OF SUBGRAPHS
Let G be a directed graph of n vertices. Having chosen a fixed ordering of its ver-
tices, assign to each edge of it the value 1 and construct the matrix 4(G) such that

G = G(A(G)) and the matrix S(G) = S(A(G)). (The matrix 4(G) is usually called the
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incidence matrix of G.) Then the elements s;, of the matrix S(G) satisfy sy = —1 if
(i, k) € G and 5, = 0 otherwise for each i, k e N, i # k, s;; being equal to the number
of edges of G leading from the vertex i for each i € N. The formula (*) yields

IL5-4(G)] = (— 1" det (S(G))ms -

Let G be a non-directed graph of n vertices without loops now. Having chosen
a fixed ordering of its vertices, assign to it the matrix S(G) = (s;) such that s, =
= sy = —1if (i, k) e Gand sy, = s,; = 0 otherwise for each i, ke N, i + k, s;; being
equal to the number of edges of G which are incident with the vertex i (the degree
of the vertex i) for each i € N. It is easy to see that S(G) = S(G’) where G’ is the di-
rected graph obtained from G by replacing all the non-directed edges (i, k) of G by
the pair of directed edges (i, k), (k, i). It is easy to see that there is a one-to-one corre-
spondence between spanning forests of G and subgraphs from L(G’). (A forest is
a subgraph each component of which is a tree.) Consequently, (— 1)"®% det (S(G))zs
is equal to the number of all the spanning forests of G such that each consists of
exactly n — |R| components, each vertex from N — R being contained in exactly one
component, the vertices r, s being contained in the same component. Especially, for
any i € N the minor det (S(G))y—;,v-(; is equal to the number of spanning trees of

6(cf. [1], [2])-

12. INEQUALITIES CONCERNING MINORS

(12.1) Let M = (my) be a real n x 'n matrix such that my, < 0 and Y m;; = 0
for each i,ke N, i + k. Then =1

(— l)m(R's) det MRS g 0 .
Equality is attained if and only if Ly_g(G(S(M))) = 0.

Proof. Obviously, M = S(A) where A is a non-negative matrix, so each term in
(*) is non-negative. Further, 4 = S(S(4)) = S(M) and the sum in (*) is non-zero
if and only if LY_x(G(4)) + 0.

n
(12.2) Let M = (my) be a real n x n matrix such that my, < 0 and Y, m;; > 0
. J=1

foreachi,keN, i % k. Then
(— l)m(R.s) det MRS > 0 .
Proof. This is an easy corollary of (12.1).

(12.3) Let M be a matrix satisfying the assumptions of (12.2). Let D = (d;) be
a non-negative diagonal n x n matrix. Then

(= 1) RS det (M + D)gs 2 (‘ 1) Re%) det Mgs .
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