

Werk

Label: Table of literature references

Jahr: 1974

PURL: https://resolver.sub.uni-goettingen.de/purl?31311157X_0099|log16

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

such that it has a fundamental branch B_0 isomorphic to B_1 and containing a vertex $v \in I_{\gamma(T)}(T_0)$ such that if we delete v from B_0 we obtain a branch isomorphic to B_2 .

We say that $B \in X$ is extraordinal if simultaneously (a) there is no $B' \in X$ such that $B' \to B$, (b) there is $B'' \in X$ such that $B \to B''$, and (c) $g(B, T_0) = g(B)$, for any $T_0 \in R$. If $B \in X$ fulfils (a), then it is isomorphic to a focus branch B_0 of T; if moreover B fulfils (b), then B_0 has at least two edges and it contains a γ -vertex. It is easy to see that if B is extraordinal then all focus branches of T which contain any γ -vertex are isomorphic to B; thus X contains at most one extraordinal branch.

By G we denote the directed graph with the vertex set X which is defined by the binary relation \rightarrow . Obviously, G is acyclic. Every vertex B of G is evaluated by the positive integer g(B). Now, we define a new evaluation h(B), for every $B \in X$, as follows: (i) if B is extraordinal, then h(B) = g(B) + 1; (b) if B is not extraordinal and if there is no $B' \in X$ such that both $B' \rightarrow B$ and $h(B') \neq 0$, then h(B) = g(B); (c) if B is not extraordinal and if there is $B' \in X$ such that $B' \rightarrow B$ and $h(B') \neq 0$, then h(B) = g(B) - 1. As G is acyclic, h(B) is uniquely determined for every $B \in X$.

Let $B \in X$. Then B is isomorphic to no focus branch of T if and only if g(B) = 1 and there is $B' \in X$ such that $B' \to B$ and B' is isomorphic to a branch of T. B is isomorphic to exactly $n \ge 1$ focus branches of T if and only if either (a) B is extraordinal, and g(B) = n - 1, or (b) B is not extraordinal, g(B) = n, and there is no $B' \in X$ such that $B' \to B$ and B' is isomorphic to focus branch of T, or (c) B is not extraordinal, g(B) = n + 1 and there is $B' \in X$ such that $B' \to B$ and B' is isomorphic to any focus branch of T. By induction we have the result that every $B \in X$ is isomorphic to exactly h(B) focus branches of T. As every focus branch of T is isomorphic to some $B \in X$ and since we know the number of foci of T, then T can be reconstructed. The case when |F(T)| = 1 is obvious. If |F(T)| = 2, then T has exactly two focus branches; they have one common edge joining the foci.

References

- J. A. Bondy: On Kelly's congruence theorem for trees, Proc. Cambridge Philos. Soc. 65 (1969), 387-397.
- [2] F. Harary, E. M. Palmer: The reconstruction of a tree from its maximal proper subtrees, Canad. J. Math. 18 (1966), 803-810.
- [3] P. J. Kelly: A congruence theorem for trees, Pacific J. Math. 7 (1957), 961-968.
- [4] B. Manvel: Reconstruction of trees, Canad. J. Math. 22 (1970), 55-60.
- [5] O. Ore: Theory of Graphs, Amer. Math. Soc. Colloq. Publ. Vol. 38, Providence 1962.

Author's address: 116 38 Praha 1, nám. Krasnoarmějců 2 (Filosofická fakulta Karlovy university).