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such that it has a fundamental branch B, isomorphic to B, and containing a vertex
v € L(p)(T,) such that if we delete v from B, we obtain a branch isomorphic to B,.

We say that B € X is extraordinal if simultaneously (a) there is no B’ € X such that
B’ - B, (b) there is B” € X such that B » B”, and (¢) g(B, T,) = g(B), for any T € R.
If B e X fulfils (a), then it is isomorphic to a focus branch B, of T; if moreover B
fulfils (b), then B, has at least two edges and it contains a y-vertex. It is easy to see
that if B is extraordinal then all focus branches of T which contain any y-vertex
are isomorphic to B; thus X contains at most one extraordinal branch.

By G we denote the directed graph with the vertex set X which is defined by the
binary relation —. Obviously, G is acyclic. Every vertex B of G is evaluated by the
positive integer g(B). Now, we define a new evaluation h(B), for every Be X, as
follows: (i) if B is extraordinal, then h(B) = g(B) + 1; (b) if B is not extraordinal
and if there is no B’ € X such that both B’ — B and h(B') % 0, then h(B) = g(B);
(c) if B is not extraordinal and if there is B’ € X such that B’ — B and h(B') # 0,
then h(B) = g(B) — 1. As G is acyclic, h(B) is uniquely determined for every B € X.
~ Let Be X. Then B is isomorphic to no focus branch of T if and only if g(B) = 1
and there is B’ € X such that B’ — B and B’ is isomorphic to a branch of T. B is
isomorphic to exactly n > 1 focus branches of T'if and only if either (a) B is extra-
ordinal, and g(B) = n — 1, or (b) B is not extraordinal, g(B) = n, and there is no
B’ € X such that B" - B and B’ is isomorphic to focus branch of T, or (c) B is not
extraordinal, g(B) = n + 1 and there is B’ € X such that B’ —» B and B’ is iso-
morphic to any focus branch of T. By induction we have the result that every Be X
is isomorphic to exactly h(B) focus branches of T. As every focus branch of T is
isomorphic to some B e X and since we know the number of foci of T, then T can
be reconstructed. The case when |F(T)| = 1 is obvious. If |[F(T)| = 2, then T has
exactly two focus branches; they have one common edge joining the foci.
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