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1. INTRODUCTION

One of the most important problems of mathematical statistics is to express the
strength of statistical dependence between two random variables. There have been
given different sets of requirements that have to be satisfied by an adequate measure
of statistical dependence. To all of these sets some requirements are common. It
seems to be natural to choose a range of values of measures of statistical dependence
to be in the closed interval [0, 1], to reach the lower bound 0 if and only if random
variables are independent and the upper bound 1 in the case of their highest de-
pendence. The highest dependence of random variables.has been introduced in dif-
ferent ways by authors. For example, we can remind W. HOFFDING’s [4] and A.
RENYI's [15] approaches to this problem. Important properties for adequate measures
of statistical dependence have also been pointed out by A. PErez [10]. However, in
practical situations, for a proper selection of an adequate measure of statistical de-
pendence an important role is played by both the specific features of the given task
and the behaviour of sample estimators of measures of statistical dependence.

In Sec. 2 of this paper a set of requirements 1—4 on measures of statistical depen-
dence is given. There also the problem of the highest dependence of random variables
is discussed. In Sec. 3 a class of measures of statistical dependence that satisfy the
requirements 1—4 is found and in Sec. 4 upper bounds of such measures of statistical
dependence under particular restrictions on random variables are derived. In Sec. 5
sample properties of a special class of measures of statistical dependence are ex-
amined.

*) A slightly different version of this paper was presented as a part of the lecture at Sixth
Prague Conference on Information Theory, September 19—25, 1971.

15



2. PROBLEM FORMULATION

Let & and n be two abstract valued random variables. It is well known that to the
random variables ¢ and # there correspond sample probability spaces (X, &, P,)
and (Y, #,P,) respectively, ie., £ > (X, %,P,) and n - (Y, #,P,). Let (X x Y,
Z x ) be the Cartesian product of (X, &) and (Y, .£) and let us assume that to the
abstract valued random variable (&, n) there corresponds a sample probability space
(X xY, & x £, Py, ie, (&) > (X x Y,  x £, P,). Moreover, let P, and P,
be marginal probability measure of P,, on (X, Z) and (Y, .#) respectively. If we con-
sider the probability measure P, x P, and a measure 1 on (X x Y, ¥ x £), where
Ais an arbitrary dominating measure of P, and P, x P,, we shall denote by p,,(x, y)=
= dP,,/dA and p(x) p,(y) = d(P; x P,)[dA the corresponding Radon-Nikodym den-
sities.

Further we shall denote by e,,,(P,, P; x P,) the minimum probability of error
(Bayes risk) for testing the hypothesis Hy: P = P, x P, against H;: P = P, in the
case that the a priori probabilities of Hy and H; are equal to 4, i.e.

1 .
¢y €1/2(Pgp Pg x Py) = 5—.[ min [ pg,(x, ¥), ps(x) p(»)] dA.
XxY

Now we shall give some general requirements on adequate measures of statistical
dependence stimulated by W. Hoffding’s [4] and A. Perez’s [10] works. If we denote
by 8(¢, n) a measure of statistical dependence of random variables ¢ and #, these
requirements do not determine 5(?,‘, n) uniquely, reading as follows:

1. 0=46(¢n) st

2. a) 6(¢,n) = 0 if and only if ¢ and # are independent;

b) lim sup d(¢, n) =0,
et1/2 Di(e)

where 2,(e) = {(£,n) : 3 > €12(Peyp P: X P,) 2 €};

¢) lim sup e,;5(Ps,, P; x P,) = %,
310 &:(3)

where &4(8) = {(£&,1):0 < &(¢, 1) < 6}.

3. a) 8(¢, n) = 1if and only if ¢ and n are singular;
b) lim inf 8(¢, n) = 1, '

010 F2(0)
where D,(¢) = {(£,1) : 0 < e;2(Psy P; x P,) S €};

c) lim inf e”z(Pg,,, P‘: X P,') = 0,
31 £209)

where &,(8) = {(&,n):1 > 8(¢, 1) 2 5.
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4. If (& n)> (X xY, %' x S, Pg,), where &' x S' < & x S is a sub-
o algebra and Py.,. is the restriction of Py, on Z’ x ', then

a) 8(¢',n') < (&, m);
b) 8(¢', n") = 8(¢, n) if and only if %' x S’ is sufficient with respect to P,, and
P, x P,.

Remark 1. Independence and singularity of random variables £ and # is defined
by the equality and singularity of probability measures P,, and P; x P, i.e., Py, =
= P, x P, and P, L P, x P, respectively.

Further we shall discuss the problem of the highest dependence of random vari-
ables. The highest dependence given by the singularity of random variables ¢ and #
in the requirement 3.a) corresponds to the c-dependence introduced in [4]. The
c-dependence likewise the strict dependence introduced in [15] have been defined
for real valued random variables. We extend both these definitions to abstract valued
random variables in the following way.

Definition 1. Random variables ¢ and # are c-dependent if there exists an 4 €
€ X x S such that

LP"’(X’ y)da - ch(x) p(y)di=1.

Definition 2. Random variables ¢ and # are strictly dependent if either ¢ = g(n)
or n = h(£), where g(y) is a measurable mapping of (Y, #) into (X, &) and h(x) is
a measurable mapping of (X, &) into (¥, £).

In the following two lemmas we examine the relationship of the strict dependence
and c-dependence.

Definition 3. A set (a class of P-equivalent sets) C in a probability space (Q, <, P)
is an atom, if P(C) > 0 and for C > B e & either P(B) = 0 or P(C — B) = 0 [7].

Lemma 1. Let C be an atom in (X x Y, % x £, Pg,). Then there exists an atom
Ein(X, %, P;) and an atom F in (Y, £, P,) such that C = E x F [Pg,].
If P, (D) =1, De X x £ and there exists an atom C in (X x Y, & x S, Py),
then P; x P,(D) > 0.
Proof. Let us consider the sequence ¢, = 1/n, n=12,..., and let n, be such
kn

a positive integer that ¢,, < Pc,,(C). For any n = n,, there exists a set 4, = | E,;, x
i=1

X F,, such that for a fixed n the sets E,, x F,, (i = 1,2, ..., k,) are disjoint and
P, (C A4,) < &,. Since for any n = ny Pg,(C — A4,) = 0, therefore

P,(CNA4,) = :‘éIP{,,(C N (Ein % Fy)) = Pg(C).
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Moreover, for any n = n, there exists a unique index i, such that
i P;,,(C) = P{n(Ei..n x F i..n) < P«‘.‘H(C) t &, .

For n = n, we denote E, = E, , and F, = F; ,. For n < n, we define E, =X,

F,=Y.Let E, = N E,, ¥y = N F,. Clearly E, x Fo = () (E, x F,) and P,,((E, x
n=1 n=1 n=1

x Fg) — C) = 0. Simultaneously P,,(C — (E, x F,)) < Y P,(C — (E, x F,)) = 0.
n=1

Now we shall prove that the set E, contains an atom E in (X, Z, P;) such that
Py(E x Fo) = Pg(C). Let us establish a decomposition of the set E, into at most
countable union of disjoint atoms E; and their non atomic complement E’ in E,, (see

o0
[6], p. 110), ie. E, =‘E)1E;U E'. If P,(E; x Fo) =0 for all i =1,2,..., then

Py(E' x Fo) = P,(C) and E’' x F, is an atom in (X X Y, & x S, Pg,). Let us
divide E’ into m, disjoint sets Ej such that PJ(E}) < P,(C), j = 1,2, ..., m,. Then
Pg,,(E}’ x Fog) =0 for j = 1,2,..., my, which is a contradiction. Therefore indeed
there exists such an atom E in (X, %, P,).

Similarly we find an atom F in (Y, 4, P,) such that P,(E x F) = P,(C). This
proves the first part of the lemma.

If Pg,,(D) = 1 and C is an atom in (X XY, & x £, Pg,), then it follows from the
first part of the lemma that there exist atoms E, F such that C = E x F [P,,].

Let us denote C* = Cn D n (E x F). Since C* is an atom in (X x Y, & x £,
P,,), therefore C* = C [P,,]. Now we shall show that P, x P,(C*) = P,(E) P,(F).

Let us assume that P, x P,(C*) < P{E)P,(F). Then there exists a countable
union of disjoint rectangles E; x F; (i =1,2,..) such that C* <« UE; x F;
c E x F and simultaneously _ i=1

® Pe x P,(C*) < X, PAE) PF) < PAE) P(F) .

Moreover, P, (C*) = ¥ P (E; x F;) = P,(E x F). In view of the fact that E x F
i=1

is an atom in (X x Y, % x S, P,), there exists a unique index i, such that
Py(E;, x F;)) = Pg(C*). Therefore P(E,;) 2 P,(C*) > 0, P,(F;) = P,(C*) > 0
and since E and F are atoms, it follows P(E, ) = P,(E), P,(F,,) = P,(F). However,
this contradicts the second part of inequality (2). Consequently P, x P,(C*) =
= P{E) P,(F) and P, x P,(D) > 0.

Corollary 1. If C is an atom in (X x Y, Z x J, P,,) and & and n are strictly
dependent then & and n are not c-dependent.
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Lemma 2. The strict dependence n = h(£) or & = g(n) implies the c-dependence
if and only if there are no atoms in (Y, £, P,) and (X, &, P,), respectively.
®

Proof. Let n = h(¢) and let ¢ and n be c-dependent. Then for D = {(x, y):
1y = h(x)} it is Pg,(D) = 1 and P, x P,(D) = [x P,(h(x)) dP; = 0. Therefore there
are no atoms in (Y, £, P,).

If n = h(¢) and there are no atoms in (Y, %, P,), then Pg(D) = P,{(x, »):
:y = h(x)} =1 and P; x P(D) = [xP,(h(x)) dP; = 0. Then we can see that ¢
and n are c-dependent.

The proof for the strict dependence ¢ = g(r) is similar.

Corollary 2. If there are no atoms in (X, %, P;) and (Y, £, P,) then ¢ and n are
strictly dependent if and only if they are c-dependent.

Remark 2. We can notice that ¢ and # are c-dependent if and only if there exists
a function k(x, y) such that k(x, y) = O[P,,] and k(x, y) + O[P; x P,]. It seems to
us that there are no reasons to restrict ourselves to strict dependences with k(x, y) =
=y — h(x) or k(x, y) = x — g(»).

Now we will state some problems that arise in this field.

Problem 1. Are there any measures of statistical dependence 6(¢, ) that satisfy
all the requirements 1—4?

Problem 2. What are upper bounds of &(¢,#) and a lower bound of e, ,(P,,
P, x P,) figuring in the requirements 2 and 3 attainable under particular restrictions
on random variables ¢ and 5?

Problem 3. What are the sample properties of adequate measures 6(&, 1)?
In the following sections we try to answer at least partly all these questions.

3. fINFORMATIONAL MEASURES OF STATISTICAL DEPENDENCE

In the sequel we shall be interested in measures of statistical dependence that are
based on the notion of f divergence of two probability measures (called also general-
ized f-entropy [9], [11], [13]) introduced by I. CsiszARr in [1]. The most important
properties of f-divergences are based on the convexity of a function f(u) defined on
[0, o0), where the following conventions are observed:

. 0\ _
3) 10) = tim (), 0 f((—)) ~0
and

0f(%> = vf, where v > 0 and f, = limf(—i).

utoo U
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For the sake of sxmphcuy we shall denote f; = f(1) and f, = f, + f.,, where fo =
= f(0).

If we consider two probability measures P,, and P, x P,on (X x Y, % x S ) then
in this special case the f-divergence of P,, and P, x P, is deﬁned by

O] D(P,, P; x P,) = fxxyf <ﬁ§;%) P(*) p,(y) dA.

According to the notation in [9] we shall call [ D/(P,,, P, x P,) — f,] the general-
ized f-information. However, considering the fact that the additive constant —f, is
irrelevant in all what follows, for the purpose of this paper we denote

(5) " I,(¢, 1) = Dy(Pg,, Py x P,)

and also call it the f-information.

In statistics some f-informations have been frequently used for measuring statistical
dependence between two random variables. The most important of them are
Pearson’s mean square contingency

2 _ [ [palx9) — pdx) 2(¥)]
# s (%) PA(¥) o

with f(u) = (1 — u)?, Shannon’s information

0) I= L”pg,,(x, y) log P(:;gxp”ﬁ). di

with f(u) = u log u and Hoffding’s coefficient of statistical dependence

® i

with f(u) = 4|1 — u|. Moreover, y and e,,,(P,,, P; x P,) are tied together by the
relation [19]

©® e1/2(Pgs Py x Py) = 3(1 — ).

One of further measures of statistical dependence based on the notion of f-information
is Hellinger’s integral

(10) -= f bl ) i) RO

with f(u) = — \/u.
The adequacy of f-information with f(u) = u log u for measuring statistical de-
pendence has been already discussed in [9], [10]. The relationship of f-informations

Per(%: ) = Pe(x) py(v)| 42
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with convex functions f(u) satisfying (3) to the requirements in [15] has been exam-
ined in [2].

Now we shall try to give some statements concerning the behaviour of measures
of statistical dependence based on f-informations with respect to the requirements
1—4. We strongly rely on the results of I. Csiszar [1], [2], A. Perez [9], [11] and
1. Vajda [19], [20] that systematically examined properties of f-divergences.

Let us denote by F the class of convex functions f(u) defined on [0, o) and satis-
fying the conventions (3) and let F be a subclass of F such that every f(u) F is strictly
convex with f, < co.

Theorem 1. For every f(u) e F

(11 56 m) = Ao s

I3 =11

satisfies all the requirements 1—4.

Proof. The satisfaction of the requirements 1, 2, 3 follows directly from the reuslts
in [20], [12] and 4 from [1].

Remark 3. We can notice that the function f(u) = — ./u (Hellinger’s integral h
is based on it) satisfies the assumptions of Theorem 1.

Remark 4. If f(u) e F with f, < oo is not strictly convex, we cannot quarantee
that 6 (&, n) given by (11) satisfies the requirements 2.a), 2.c) and 4.b). However, for
the function f(u) = |1 — u| (minimom probability of error e,;,(P,, P; x P,) and
Hoffding’s coefficient of statistical dependence y are based on it) that is not strictly
convex with f, < oo, we can state the following obvious lemma.

Lemma 3. Hdffding’s coefficient of statistical dependence y = 0 (i.e. e;,5(Pg,
P, x P,) = 1)if and only if £ and n are independent.

From Lemma 3 it follows that H6ffding’s coefficient of statistical dependence satis-

fies moreover the requirement 2.a) and it obviously satisfies also the requirement
2.0).

Theorem 2. For every f(u) e F with f, = o
(12) 6&n) = o[1(& n)]

satisfies the requirements 1, 3.b) and 4.a). The function ¢(t) in (12) is an arbitrary
real function defined and increasing on [f, ©], with @() = lim ¢(t), that is
tf oo

mapping the closed interval [ 1, ] onto the closed interval [0, 1].

Proof follows from the results in [20], [1].
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This sort of transformations of f-informations with f, = co has already been used
in statistics. For example, the transformation of Pearson’s mean square contingency
x* by the funetion ¢,(f) =./(¢/(1 + )) gives the contingency coefficient
JOA/(1 + x*) [3] The transformation of Shannon’s information I by the function
@,(f) = /(1 — e~ ?") gives the informational coefficient of correlation /(1 — e~2") [5].

We can find many other functions ¢(t) that are increasing on (f;, c0] and mapping
this interval onto [0, 1]. However, the functions ¢,(f) and ¢,(f) are mapping x* and I
respectively onto the closed interval [0, 1] in such a way that in the case of Gaussian
distribution Py, with the coefficient of correlation ¢

(13) \/ L -ty =

1+

This property for adequate measures of statistical dependence has been required in
[15].

Further, é (¢, n) given by (11) and (12) will be called f-informational measures of
statistical dependence. We can see that f-informational measures of statistical de-
pendence are even symmetrical, i.e. 5 (&, 1) = 8,(n, £). The symmetry for adequate
measures of statistical dependence has been required in [15]. However, it remains an
open problem whether the symmetry of measures of statistical dependence is a useful
property in general. In some cases asymmetrical measures of statistical dependence
seem to be much preferable [10].

4. UPPER BOUNDS OF fINFORMATIONAL MEASURES
OF STATISTICAL DEPENDENCE

In Sec. 3 we introduce a class of f-informational measures of statistical dependence
and have not put any restrictions on random variables (6, n) under consideration.
In some cases we can a priori restrict the investigated class of random variables (f, 1)
and then it may happen that the highest dependence defined by the requirement 3.a)
in Sec. 3 never can occur. According to Lemma 1, this arises in all cases when there
exists an atom in (X x Y, & x S, P,,) and, consequently, in the case when we con-
sider a class of random variables (¢, 7) > (X x Y, T x 7, P,,), where & and ¥ are
c-algebras generated by measurable decompositions Dy = (X;, X,,...,X,) of
(X, &) and Dy = (Y3, Yy, ..., Y;) of (Y, #) respectively. Therefore it seems to be useful
to ask for attainable upper bounds of & (&, n) with respect to an a priori restricted
class of random variables (&, ). Owing to the relations (11), (12) it is sufficient to

solve this problem for f-informations I (¢, #). In the sequel we use the notation intro-
duced above.

Theorem 3. Let ¢ — (X, ¥, P;) and n — (Y, ¥, P,) be two random variables and
let (&,1n) = (X x Y, ¥ x 5, P,,) be a random variable with marginal probability
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measures P; and P, on (X, ) and (v, ¥) respectively. Let us denote by Py =
=P (X; x Y)), pr. =P{X), py=PX)) for i=12,..,1, j=1,2,...,5 and
assume p;, > 0fori=1,2,...,r,p,; > 0forj=1,2,...,5 Then

(14) 1(¢,7) < min [H/), H/(n)] ,
where

(19) B = 22t s (o) + 00t - 5D
and

(16) H,(r) = zm( ) +fO( -3 7).

Proof. Let us consider two measurable spaces (I, #, p) and (R, &, v), where
I= [0, 1], & is the o-algebra of Borel sets in I and pu is Lebesgue measure, R =
= {1,2,...,r}, R is the o-algebra of all subsets in R and v is the counting measure.

Let us divide I into r intervals Jy=[aub) t=1,2 ...0 = 1) I, =[a,d,]
i-1

where a; = z Pr.> by = Z Pis Po. = 0 and let g,(f) denote the density of uniform

dlstrlbutlon onJ;i= 1, 2, ..., . A measurable decomposition D;, = (E;y, Eq3, ...
» Ey) of (J,, #,), B; = J; n & into s parts is done in such a way that

Jl g,(t)du(t)=p—”, i=14L2.4rj=1,2...,5
Eij Di.
If we denote E; = U E,j, j=1,2,..,s, then Dg = (E,, E,, ..., E,) is a measurable

decomposition of (I .@) and S(DE) denotes the minimum o-algebra generated by Dy.
We can define a probability measure Pg,, on (R x I, # x %) in the following way:
dP,(i, ) = p,. g{f) d[v x u] . Then marginal probability measures of B,, on (I, %)

and (R, &) are dP,(t) = h(t) du, where k() = Y. p;. g(f) and Py(i) = p,. respectively.
i=1

If we denote by P, the restriction of P,, on (R x I, # x S (Dg)), we can see
that P, (i, Ej) = p;;fori =1,2,...,r,j = 1,2,..., s Then it follows from Theorem
3in [1]

1,(¢, ) = Dy(Pgyy Py x Py) < Dy(Pyy, Pe x Py) =

= J'R J (Lg‘(t)) P h())d[v x p] = le’t- -

«r \Pu h(t)
5 [ () ety x 1= E e
-k;pk.f (—ii’j—) =§1p?.f (;}'—) +£(0) (1 -;pi) = H{¢),
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where ;; = 1 and &;; = 0 for i % j is the Kronecker symbol. Similarly we get
1,(¢, n) < H/(n). Therefore I (¢, n) < min [H/(£), H(n)] .

Corollary 3. If r = s, pyy = pi. = py = 1r, i = 1,2,..., 1, then
(17 16 =140 = L2+ s L1

Theorem 4. Let us consider two random variables ¢ — (X, Z, P,) and & -
- (X, %,P), where P(X)=p., PX)=1[r for i=1,2,..,r. If g(u) =
= [f(u) — f(0)]/u is a concave function, then

g 1O s =124 5021
Proof. Applying Jensen’s inequality we get
HAO) = 5 pLs (o) + 7001 - 5o =70 +
= ie =1

1
. | fl=) - 1O

ie
i=1 1

Pi.

Remark 5. We can see that Theorem 4 holds for example for the following func-
tions: f(u) = ulogu, f(u) = |1 — u|, f(u) = (1 — u)* and f(u) = —u", ae (0, 1).

Remark 6. Shannon’s inequality follows from Theorem 3 for f(u) = u log u.

Corollary 4. If (&,n) > (X x ¥, & x %,P,), € (X, 2, P) and 71— (Y, %,Q)
are random variables, where P(X,) = 1[r for i = 1,2,...,r and Q(Y)) = 1[s for
ji=12,..,sand g(u) = [f(u) — f(0)]/u is a concave function, then

(19) 1,(¢, m) < min [H(&), H/(m)] .

We see that Corollary 4 enables us to estimate upper bounds of I (¢, ) for (¢, ) with
unknown marginal probability distributions and Theorem 3 for (¢, ) with a priori
given marginal distributions. However, there are some cases when we can evaluate
the maximum of I(¢ ) over all random variables (£, 7) = (X x ¥, & x 7, P,)
with a priori given marginal probability distributions P, and P, ,directly.

Lemma 4. Let £ - (X, &,P) with r =2, P(X,)=p> 0, P(X;)=(1-p)> 0
and ij - (Y, #, Q) where Q(Y)) = 1/s, j = 1,2, ..., 5. Let us denote by € a class of
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random variables (£,n) = (X x Y, T x 7, P,,) with marginal probability measures
P, =P and P,=Q on (X, ) and (Y, #) respectively. Then the maximum of
1(&, n) over € is equal to

(20) e I(& ) = ke G) + ¢ (p - f) + (s — k= 1) (0),

where
_ D (s5x 1—p,./1—sx
w=1() ()

Proof. Let us consider random variables (¢,7) = (X x Y, & x 4, P,,) with
marginal probability measures P, = P and P, = Q and denote P, (X, x Y)) = z,,
Po(X, x Y))=(]s) —z; for j=1,2,..,s, 2=(24,23,...,2), 05 2; X 1fs,

Z z; = p. Then
om0 () 522

Fy 1 —_ p
=j;1¢(2,-) = &(z).

and k = [sp].

j=

In view of the convexity of f(u) we can see that &(z) is a convex function. Then by
Theorem 4d in [21], &(z) reaches its maximum value at the point z* = (z}, z3, ..., z3),
where 2} =23 = ..o=zy =1s, i =p— 15 B =2 =...=20 =0
Putting P.,(X; x Y;) = zJ, Pg(X, x Y)) = (1fs) — 2}, j = 1,2, ..., 5, we obtain in
this case

1 1) = Dy(Pey P x Q) = k¢(§) ¥ ¢(p_§) (s — k= 1)9(0),

where k = [sp], which proves (20).
The following Theorem shows the relationship of the strict dependence of random

variables ¢ and 7 to the attainability of the upper bounds H,(¢) and H(n) given by
(15) and (16) respectively.

Theorem 5. Under the assumptions of Theorem 3, the strict dependence & = g(n)
or n = h(§) implies 1{(&, n) = HA&) and 1(&, n) = H(n), respectively. If, more-
over, f(u) is a strictly convex function, then 1(&,n) = H{¢) if and only if & =
= g(n) and 1,(¢,n) = Hy(n) if and only if n = h(¢).

Proof. Let us consider ¢ = g(n). Then for every i 1,2, ..., (i = r) there exist num-
n(i) -

bers pi, Diss «+os Paingy SUch that ) p,; = p;, and Pg(X; x Y;) =0 for j # i,
k=1
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(k=1,2,...,n(i)), Pp(X, X Y)) = p.y for j = i (k=1,2,...,n(i)), fori = 1,2, ...
r,j=12,...,s Hence

r n(i) p r n(i)
If(f’ n) =2 2 PiDu, ( b )+f(0) (1 —‘Z:l kglpf. p.i) = Hy(¢).

i=1k=1 i-P-ik

Let f(u) be a strictly convex function and I, n) = H{¢). Let us assume that
¢ = g(n) does not hold. Then there exists j(1 < j < s) such that 1 > p;;/p,; = 0

fori=1,2,...,r and Z py[p.; = 1. Without loss of generality we can put j = s

and assume p,,,/p,s > 0 for i=1,2,.,mmz2and pyfp,,=0fori=(m+ 1),
(m + 2),..., r. Let us consider two measurable spaces (I, %, y) and (R, &, v), where
I =[0,1], # is the o-algebra of Borel sets and p is Lebesque measure, R =
= {1, 2 ey r}, A is the o-algebra of all subsets of R and v is the counting measure.
Let us establish a measurable decomposition Dy of (I, &), Dy = (J1, J2, -..s Jy4m=-1)s

wherje J; = [a, J) j=12..,(s+m—2)and J(H,,, o= [a(s+,,, - b(s+1,,, nl
aj; ‘kZoP.k, b; —kZOP.k forj=1,2..,(s-1),4a;= Z P + Z Pinb; = Z Pu +
Jj—s+1
+ Y psforj=s, (s+1),...,(s+m—1), and p,o = po; = 0. Let us denote
1=0

by S(Dy) the o-algebra generated by Dy and define a probability measure IN’,:,, on
(R x I, # x S(Dy)) in the following way:

ﬁg,,(i, .7,) =pfori=12,..,rj=12,.., (s -1,
If’{,'(i, ](s+‘_1)) = 5i!pis fOI‘ i = 1, 2, cenyg Iy t = 1, 2, ey m

At the same time P, and lN),, denote the corresponding marginal probability measures
on (R, &) and (I, S(Dy)) respectively. Let us establish another measurable decomposi-
tion Dy = (Jy, J3, ..., J;) of (I, &), where J, =J,, i=1,2,...,(s — 1) and J, =

s+m—1

= U J, and denote by P,, the restriction of P, on (R x I, # x S(D;)). Owing
i=s

to the fact that g-algebra 2 x S(D,) is not sufficient with respect to 'f*;,, and P; x ﬁ,,,
Theorem 3 in [1] and Theorem 3 imply Hy(¢) = I{¢, ) = Dy(Pg, P; x P,) <
< DBy, P; x P,) < H/{(¢) which leads to contradiction.

Remark 8. For f(u) = ulog u Theorem 5 gives the known result for Shannon’s
information.
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5. «-INFORMATIONAL MEASURES OF STATISTICAL DEPENDENCE

In Sec. 3 we met with two important subclasses of f-informations that led to
interesting measures of statistical dependence. The first one is given by f(u) =
=|1 — u|", @ = 1 and such f-informations we call a-informations [20]. To this
subclass total variation with f(u) = |1 - u| and Pearson’s mean square contingency
with f(u) = (1 — u)® belong. To the second subclass with f(u) = sign (x — 1) u°%
a > 0, [2], [11], [18], Hellinger’s integral with f(«) = — ./u belongs and Shannon’s
information can be derived by [11]

(21) lim &M =1y

all a—1
and

lim M =1

atl 1—a
or [16]

) 1

(22) lim 108 lIgign(a—l)u’(é’ n)l =1 ’

aw100 — 1

where (1)(e — 1)) 10g |1 gn(a-1yue(é; 1)| is the so called Rényi’s information of order a.

However, it seems that an important role for measuring the statistical dependence
can be played by f-informations with f(u) = —u% « € (0, 1), that satisfy all the re-
quirements 1—4. Moreover, the function f(u)/u is a concave function and Theorem 4
holds. In the sequel, ,(¢, 7) will denote f-informational measures of statistical de-
pendence with f(u) = —u% « € (0, 1), i.e. 6,(&, ) = 1 + I_ (& 1), and §,(&, n) will
be called a-informational measure of statistical dependence. In the case of Gaussian

distribution P, with the coefficient of correlation g the relationship of 6,(¢, 1) to ¢
is expressed by

(23) oo =1- = L

[ - e~ D7

In the first subclass of f-informations with f(u) = |1 - u[', o = 1, sample proper-
ties for & = 2 have already been investigated in [8]. In this Section we shall be in-
terested in sample properties of f-informations with f(u) = —u%, « € (0, 1) under the
hypothesis that ¢ and # are independent.

Let ¢ = (X, &, P,) and n = (¥, 7, P,) be two random variables and let(¢, #) =
=(X x Y, Z x J,P,,) be a random variable with marginal probability measures
P, and P, on (X, &) and (Y, ) respectively. Let us denote p;; = Py(X; x Y)),
Pi. = PYX)), p.; = P,(Y)) and assume p;, > 0, p,; > Ofori =1,2,...,r,j=1,2,...
.+ 5. Let us have n independent realizations of (&, 7), ie., (X, y), t =1,2,...,n
from a sample space (X x Y). Let p;; = ny/n, p;, = n.[n, p.; = n,;[n be sample
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