

Werk

Label: Article **Jahr:** 1973

PURL: https://resolver.sub.uni-goettingen.de/purl?31311157X_0098 | log99

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

ON CONNECTED GRAPHS CONTAINING EXACTLY TWO POINTS OF THE SAME DEGREE

LADISLAV NEBESKÝ, Praha (Received September 15, 1972)

Following BEHZAD and CHARTRAND [1], we shall say that a graph G with $p \ge 2$ points is quasiperfect if it contains exactly two points v and w of the same degree. The points v and w will be called the exceptional points of G. (For basic notions of graph theory, see HARARY [2].)

By D_2 we shall denote a line. If p is an integer and $p \ge 3$, then by D_p we shall denote the complement of a graph obtained from D_{p-1} by adding an isolated point. As it immediately follows from Theorem 2 (and from its proof) in [1], for any integer $p \ge 2$ it holds that: (i) G is a connected quasiperfect graph with p points if and only if G is isomorphic to D_p ; (ii) G is a disconnected quasiperfect graph with p points if and only if G is isomorphic to the complement \overline{D}_p of the graph D_p ; (iii) each exceptional point of D_p has degree [p/2]. (If x is a real number, then [x] is the greatest integer n such that $n \le x$; similarly, $\{x\} = -[-x]$.)

Let p be any integer such that $p \ge 2$. We shall investigate properties of the graph D_p .

Proposition. D_p has $[p/2] \cdot \{p/2\}$ lines.

Theorem 1. Let t and u be points of D_p having degree d and e, respectively. Then t and u are adjacent if and only if $d + e \ge p$.

Proof. The case p=2 is obvious. Assume that $p=n\geq 3$ and that for p=n-1 the theorem is proved. Let $d\leq e$.

The case when e = p - 1 is obvious. Assume that $e \le p - 2$; then t and u lie in D_{p-1} . The points t and u are adjacent in D_p if and only if they are not adjacent in D_{p-1} . The points t and u are not adjacent in D_{p-1} if and only if (p-1-d) + (p-1-e) < p-1. Hence the theorem follows.

Corollary 1. Let i be an integer, $1 \le i \le \lfloor p/2 \rfloor$. By t_i and u_i we denote points of D_p