

Werk

Label: Table of literature references

Jahr: 1973

PURL: https://resolver.sub.uni-goettingen.de/purl?31311157X_0098|log94

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

5. GRAPHS

Let G be a finite non-directed graph of n vertices. Having chosen a fixed ordering of its vertices, assign to G an $n \times n$ matrix $A_G = (a_{ik})$ such that $a_{ik} = 1$ if G contains an edge between the *i*-th and the k-th vertices, $a_{ik} = 0$ otherwise. This matrix is usually called the incidence matrix of G.

(5.1) Let G be a finite non-directed graph of n vertices and A_G its incidence matrix. Then the number of hamiltonian circuits of G is equal to

$$\frac{1}{2} \sum_{k=1}^{n} (-1)^{n-k} (k-1)! \sum_{N/M_1...M_k} \det A_G(M_1) ... \det A_G(M_k).$$

Proof. Let G' be a directed graph obtained from G by replacing each (non-directed) edge of G by a pair of oppositely directed edges. Evidently, cyp A_G coincides with the number of cycles of the length n in G'. Pairs of oppositely oriented cycles of G' are in one-to-one correspondence with hamiltonian circuits of G. The required expression is obtained by combining this with (3.1).

(5.2) Let G be a finite non-directed graph of n vertices and A_G its incidence matrix. Let $i, j \in \mathbb{N}$, $i \neq j$. Denote by A'_G the matrix obtained from A_G by deleting the i-th row and the j-th column. Then the number of hamiltonian paths between the i-th and the j-th vertices of G is equal to

$$\frac{1}{2} \sum_{k=1}^{n} (-1)^{n+k+j-k} (k-1)! \sum \det A'_{G}(M_{1}) \det A_{G}(M_{2}) \dots \det A_{G}(M_{k})$$

where summation extends over all the partitions $M_1, ..., M_k$ of N such that $i, j \in M_1$.

Proof. Differentiate (3.1) with respect to a_{ij} . The obtained formula implies the required result similarly as (3.1) implies (5.1).

References

- [1] G. C. Rota: On the foundations of combinatorial theory I. Zeit. für Wahr. 2 (1964), 340-368.
- [2] C. Berge: Principles de combinatoire (1968).
- [3] J. Riordan: An introduction to combinatorial analysis (1958).

Author's address: 115 67 Praha 1, Žitná 25, (Matematický ústav ČSAV).