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COMBINATORIAL IDENTITIES AND GRAPHS

ANTONIN VRBA, Praha
(Received July 10, 1972)

INTRODUCTION

In the present paper an elementary proof is given of the combinatorial inversion
formula (2.1) which can also be deduced from the M&bius inversion formula (cf. [1],
[2]). The proof makes use of the properties of common matrix functions. Conversely,
this formula is applied to obtain some expressions of these matrix functions in terms
of each other; especially, the permanent is expressed in terms of the principal minors
of the same matrix and vice versa. These formulae yield some combinatorial identities.
Further, the close relationship between graphs and matrices makes it possible to
express the number of hamiltonian circuits of a non-directed finite graph in terms of
the principal minors of its incidence matrix.

I wish to thank Professor M. FIEDLER on whose suggestion these matters were dealt
with.

1. PRELIMINARIES

Let M be a set. Denote by M/M, ... M, the partition of M into My, ..., M,, i.e.
the (non-ordered) k-tuple of non-void mutually disjoint sets My, ..., M; whose union
is M. By |[M| denote the cardinality of M. Denote by M/[M ... M, the partition of M
into My, ..., M, such that |M,| > 1 for each 1 < i < k. By S(M) denote the family
of all non-void subsets of M. Denote by s( |M |, k) the number of partitions of M
into k parts. This number is usually called the Stlrlmg number of the second kind
(v. [3]).

Let n be a positive integer. Denote N = {1, 2, ..., n}.

Let A = (ay) be an n x n matrix. As usual, denote by det A4 the determinant of 4

and by per A the permanent ' [] a;,, of 4 (summation is extended over all permuta-
i=1
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tions {py, ..., p.} of N). Further, consider the matrix functions

cyd 4 = (=17~ E L ay,

and
Cyp A = Z'l:[laipg L)

where summations extend over all cyclic permutations {p,, ..., p,} of N. Let Ve S(N).
Denote by A(V) the principal submatrix obtained from A4 by deleting the rows and
columns with indices from N — V. Thus, under this notation, A = A(N), a; =
= A({i}). Observe that there are the following connections between the above
matrix functions:

(1.1) det 4 = Z Y. cyd A(M,)...cyd A(M,)
k=1 N/M;...Mj
(1.2) per A = Z Y. cyp A(M,) ... cyp A(M;)

k=1 N/M;.. My

They are based on the fact that each permutation is, roughly speaking, a composition
of cycles.

Denote by I the n x n identity matrix and by J the n x n matrix each element of
which is 1. The number of cyclic permutations of N being equal to (n — 1)!, it holds
cypJ =cypJ —1=(n— 1)! for n > 1. The number of permutations {py, ..., p,}

of N such that p; # i for each zeremgd = n! Z( 1)¥/k!, it holds per (J — I) =
= d,. Obviously, det (J — I) = (=1)""!(n — 1)

2. AN INVERSION FORMULA

r
(2.1) Let N be a finite set. Let c, d be two function defined on S(N) such that

aon) = . 2 oM Y

k=1 M/M
for each M € S(N). Then

o(M) =:§(—l)"“(k—-l)!M Y d(M,)...d(M,)

for each M € S(N).
Proof. First of all, prove that
IM]|
(% M) =Y aq Y dM,)..dM,)
k=1 M/M;i...My
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for each M € S(N), the coefficients g, satisfying the recurrence

dy = 1

K
Qvy(--- 4wy for 1 <k Z|N|.

=2 (1.KV1. Vs

9 = —

The case [M| = 1 being obvious, suppose that 1. < [M| < |N| and that the last state-
ment is true for each M’ such that [M’| < |M]|. It follows

(M) = d(M) —klgl M/Mz‘;..MkC(MI) oMy =

M|

—ap) =% % (Sa ¥ d)..dw)..

k=2 M/M,..Mks=1 M,;/V..Vs

(S0 T dv) ).

k/V1...Vs

Further,

M) =dM) =% T Ty T A A,

k=2 s=2 {1..k}/V1...Vs focd

which completes the first part of the proof. Thus the coefficients g; in (*) are
independent of M.

To compute them, notice that according to (1.1), the relation (x) is true for the
functions ¢(V) = cyd A(V) and d(V) = det A(V) for each n x n matrix A. The
substitution 4 = J yields g, = (—1)!™!"*(|M| — 1)! for each M e S(N).

(2.2) Let N be the a finite set. Let d, p be two functions defined on S(N) such that
IM]| _
Y- k— D T M) d(M) -
k=1 . M/My...Mj
L M|-k
=kz_:l(—1)| =k(k = 1)1 Y p(M,)... p(M,)

M/M;.. Mg

for each M € S(N) Then

(M) ;lg'l(- DU S (M) (M)

for each M € S(N).

Proof. First of all, prove that

(%) p(M) =;l§("l)'m_k R Y d(M)...d(My)

M/M,y...My
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for each M e S(N), the coefficients r, satisfying the recurrence
r 1 = 1

k
rk = (k - 1)! + Z(—l)s (S - 1)! Z rlyll cee rly.l fOl‘ 1 < k é INl.
s=2 {1..k

NV 1...Vs

The case |[M| = 1 being obvious, suppose that 1 < |M| < |N| and that the last
statement is true for each M” such that [M’| < |[M|. It follows

p(M) =:§1(—1)'M|"‘(k - 1)!M/ Y dMy)...d(M,) +

M;...M,

+:§l(—l)k (k - 1)!M/ b kP(Ml) .- p(My) =

M;...M,

='§'(_1)wu—k(k_1)1 Y dM,)...dM,) +

= Leoe

+:§l(—l)*(k—1)sM T (R Y d).d).-..

IMi..My s=1 M/Vy1..Vs

(‘fgi(_l)wu—s Y dV,)...dV) =

My/Vi..Vs
=k'§1'(_1)lMl-k((k - 1) +§2(—1)s (s - 1)!(1...“/2;;1..},r""'

er,,)M/M;Mkd(Ml) .. d(My)

which completes the first part of the proof. Thus the coefficients r; in (**) are in-
dependent of M.

To compute them, notice that according to (1.1) and (1.2), the relation (*) is true
for the functions ¢(V) = cyd A(V), d(V) = det A(V) as well as for the functions
(V) = cyp A(V), d(V) = per A(V) for each n x n matrix 4. Further, according to
(2.1), the relation (#*) is true for the functions d(V) = det A(V), p(V) = per A(V).
The substitution A = J yields r = [M|! for each M € S(N).

3. MATRIX FUNCTIONS
Besides of and owing to (1.1) and (1.2), there are the following connections between

the functions of an arbitrary n x n matrix A. They are an easy consequence of the
results of the preceding section.

(1)  cyd4 =k<=;;1(-1)"-1 (=10t 3 detAQM,)...det A(M)
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(32)  cypd =k=i1(_ D7 (k= 0! T per QM) ... per A(My)

k

(3.3 det A=Y (—-1)""%k! Y perA(M,)...per A(M,)
k=1 N/My...Mj

(3.4) per A=Y (=1"* k! Y det A(M,)...det A(M,).
k=1 N/Mj.. My

4. COMBINATORIAL IDENTITIES

The substitution of the matrices I, J and J — I into (1.1), (1.2), (3.1)—(3.4) yields
the follewing combinatorial identities. Many of them can be, of course, rewritten and
proved in a more natural way.

él(—l)kw;.m(wq — ) (M) -1)!=0 (n>1)

Y (Mg =D (M| - 1) =n!

k=1 N/M;...My

él(—l)k_ﬂlN//M;“Mk(lMll — ) (M =)t =n—1

Y (M| = 1) (M) - 1) = d,

k=1 N//M1..Mi

kil(—l)" (k= 1)!s(n,k) =0 (n>1)

N/My...My

él(—1)k—1 (k — 1)!N/ lzka|M1|! v Myt = (n = 1)
él(k — 1)!N/M§.M,‘(lMll ). (M| -1)=(n—-1)! (n>1)
k;(_l)k_l(k =0 Y dyyy-dpyy = =10 (n>1)

(=1)"*k!s(n, k) =1

SV M =0 (1> 1)

N/M;y..M

M= iM= 1M

k! z (lMll - 1)"'(|Mk| - 1) = dll
k=1 N/M;..Mj

Z(_l)k_'1 k! Z dlM:l d|M,‘| =n-—1.
k=1 N/M;...My
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