

Werk

Label: Article Jahr: 1973

PURL: https://resolver.sub.uni-goettingen.de/purl?31311157X_0098 | log91

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

AN APPLICATION OF HALLS' THEOREMS TO MATRICES

Antonín Vrba, Praha (Received July 10, 1972)

INTRODUCTION

It is the purpose of this paper to simplify proofs and to extend results of K. Čulík's paper [1] in which matrices which are singular (non-singular) together with all the matrices of the same combinatorial structure of zero elements are characterized. The well-known theorem of P. Hall concerning the existence of a system of distinct representatives of a system of sets and its quantitative refinement of M. Hall, Jr. are exploited.

PRELIMINARIES

Let $A = (a_{ik})$ be a matrix the elements of which belong to a given integral domain I of the characteristic h. Denote by P(A) the class of all the matrices $B = (b_{ik})$ over I of the same size as A such that, for each pair of indices, $a_{ik} = 0$ if and only if $b_{ik} = 0$.

Let A be square. Then it is said to be absolutely singular if each matrix from P(A) is singular. If P(A) consists entirely of non-singular matrices then A is said to be absolutely non-singular. A is said to be pseudo-triangular if it arises from a triangular matrix with non-zero elements in the main diagonal by permutation of its rows and columns.

Let n be a positive integer. Denote $N = \{1, 2, ..., n\}$.

Let A be an $n \times n$ matrix. Then for each permutation $\{p_1, p_2, ..., p_n\}$ of N the product $\prod_{i=1}^n a_{ip_i}$ is called a diagonal product of A. Let $r, c \in N$. Denote by A_{rc} the submatrix obtained from A by deleting the r-th row and the c-th column. Let $\emptyset \neq R \subseteq N$, $\emptyset \neq C \subseteq N$. Denote by A_{RC} the submatrix of A obtained from A by deleting the rows and columns with indices from N - R and N - C respectively. Thus $A = A_{NN}$, $A_{rc} = A_{N-\{r\},N-\{c\}}$.

Let $S = \{S_1, S_2, ..., S_n\}$ be a system of sets. An *n*-tuple $\{s_1, s_2, ..., s_n\}$ such that $s_i \in S_i$ for each $i \in N$ is usually called a system of distinct representatives of S. Denote the cardinality of a set Z by |Z| and $t = \min |S_i|$.

A system S possesses a system of distinct representatives if and only if $|\bigcup_{i \in K} S_i| \ge |K|$ for each $K \subseteq N$. (P. Hall 1935.)

Assume a system S possessing a system of distinct representatives. If t is infinite then there exist at least t systems of distinct representatives of S. If t is finite and t > n then there exist at least t!/(t-n)! systems of distinct representatives of S. For $t \le n$ there exist at least t! systems of distinct representatives of S. (M. Hall, Jr. 1948.)

Proofs of these well-known theorems are available e.g. in [2] or [3].

Given an $n \times n$ matrix A, denote by S(A) the system $\{S_1(A), S_2(A), ..., S_n(A)\}$ where $S_i(A) = \{k \in N \mid a_{ik} \neq 0\}$. Evidently, systems of distinct representatives of S(A) are in one-to-one correspondence with non-zero diagonal products of A. Notice that $A_{RC} = 0$ if and only if $C \subseteq N - \bigcup S_i(A)$.

If h=2 the concepts of absolute singularity (absolute non-singularity) and singularity (non-singularity) merge and so this case is not of considerable interest. Moreover, the considerations in what follows are not valid for h=2. Thus assume henceforward $h \neq 2$.

COMBINATORIAL CHARACTERIZATIONS

The following properties of an $n \times n$ matrix A are equivalent:

- 1. A is absolutely singular.
- 2. Each diagonal product of A is zero.
- 3. A contains a zero $p \times q$ submatrix such that p + q > n.

Proof. $1 \to 2$. The case n = 1 being obvious, suppose that n > 1 and that the implication is true for $(n-1) \times (n-1)$ matrices. Let some diagonal product of A, say $\prod_{i=1}^{n} a_{ip_i}$, be non-zero. Then, according to the induction hypothesis, there exists $B \in P(A)$ such that det $B_{np_n} \neq 0$. It is easy to see from the expansion of det B by the n-th row that non-zero elements of this row could have been chosen such that det $B \neq 0$.

In the case h=0 the following simpler proof is valid: If $\prod_{i=1}^{n} a_{ip_i} \neq 0$ then put $b_{ip_i} = 1$ for each $i \in N$ and $b_{ik} = 0$ or $b_{ik} = 2$ otherwise in such a way that $B = (b_{ik}) \in P(A)$. Evidently, det B is odd.

 $2 \leftrightarrow 3$. (This equivalence is due to G. Frobenius or D. König.) Each diagonal product of A is zero if and only if the system S(A) does not possess a system of distinct representatives. According to the theorem of P. Hall, this takes place if and only if $\left|\bigcup_{\mathbf{l} \in K} S_i(A)\right| < |K|$ for some $K \subseteq N$. Further, this is equivalent to the existence of

 $\emptyset \neq K \subseteq N$ such that $N - \bigcup_{i \in K} S_i(A) \neq \emptyset$ and $|K| + |N - \bigcup_{i \in K} S_i(A)| > n$, the submatrix $A_{K,N-\bigcup_{i \in K} S_i(A)}$ being zero.

 $2 \to 1$. If each diagonal product of A is zero then so is each diagonal product of each $B \in P(A)$, hence det B = 0.

The following properties of a square matrix A are equivalent:

- 1. A is absolutely non-singular.
- 2. Exactly one diagonal product of A is non-zero.
- 3. A is pseudo-triangular.

Proof. Denote by n the order of A.

- $1 \to 2$. The case n = 1 being obvious, suppose that n > 1 and that the implication is true for $(n-1) \times (n-1)$ matrices. If A is absolutely non-singular then there is a row of A containing exactly one non-zero element, say a_{ik} . (Otherwise it is easy to construct a matrix $B \in P(A)$ such that all its row sums are zero.) Then det $A = \pm a_{ik}$ det A_{ik} , hence A_{ik} is absolutely non-singular and, by the induction hypothesis, exactly one diagonal product of A_{ik} is non-zero. It follows that A has exactly one diagonal product as well.
- $2 \rightarrow 3$. The case n=1 being obvious, suppose that n>1 and that the implication is true for $(n-1)\times (n-1)$ matrices. Assertion 2 is equivalent to the fact that S(A) possesses exactly one system of distinct representatives. According to the theorem of M. Hall, there exists $i \in N$ such that $S_i(A)$ consists of exactly one element, say k, i.e., a_{ik} is the only non-zero element of the i-th row of A. Exactly one diagonal product of A_{ik} being non-zero, A_{ik} is pseudo-triangular by the induction hypothesis. Accordingly, A is pseudo-triangular as well.
 - $3 \rightarrow 1$. Obvious.

ALGEBRAIC CHARACTERIZATIONS

Let r < n be positive integers. Then the following properties of an $n \times n$ matrix are equivalent:

- 1. A is absolutely non-singular.
- 2. For each $B \in P(A)$ there exist $\emptyset + R \subset N$, $\emptyset + C \subset N$, |R| = |C| such that $\det B_{RC} \det B_{N-R,N-C} \neq 0$ and either $\det B_{RQ} \det B_{N-R,N-Q} = 0$ for each $Q \subset N$, |Q| = |R|, $Q \neq C$, or $\det B_{QC} \det B_{N-Q,N-C} = 0$ for each $Q \subset N$, |Q| = |C|, $Q \neq R$.
- 3. A arises by permutations of rows and columns from an A' such that for each matrix from P(A') the product of its $r \times r$ minor by the complementary minor is non-zero if and only if these minors are principal.