

Werk

Label: Article **Jahr:** 1973

PURL: https://resolver.sub.uni-goettingen.de/purl?31311157X_0098|log89

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

ON THE LINE GRAPH OF THE SQUARE AND THE SQUARE OF THE LINE GRAPH OF A CONNECTED GRAPH

Ladislav Nebeský, Praha (Received April 4, 1972)

Let G = (V, X) be a nontrivial connected graph with p points and q lines. The square of G is the graph (V, X') where $uv \in X'$ if and only if the distance between u and v in G is either 1 or 2. The line graph of G is the graph (X, Z) where $xy \in Z$ if and only if x and y are adjacent lines in G. The square of G and the line graph of G will be denoted by G^2 and L(G), respectively. Consequently, the line graph of the square of G and the square of the line graph of G will be denoted by $L(G^2)$ and $L(G)^2$, respectively. In the present paper we shall prove that if $p \ge 3$, then $L(G^2)$ is hamiltonian, and that if $q \ge 3$, then $L(G)^2$ is hamiltonian. (For the terminology of graph theory, see HARARY [1]; for some results relative to the present paper, see [1], [2], and [3].)

Lemma 1. Let G be a connected graph with $p \ge 3$ points and such that it contains a point u of degree 1 and a point w of degree p-1. If v is a point of G such that $u \ne v \ne w$, then there exists a spanning path in L(G) joining the points uw and vw of L(G).

Proof. The case when p=3 is obvious. Assume that $p=n \ge 4$ and that for p=n-1 the lemma is proved. The case when G is a star is simple. Assume that G is not a star. Then there is a point t of G such that t has degree at least 2 and $v \ne t \ne w$. By v_1, \ldots, v_k we denote the points of G different from w and adjacent to t. Obviously, there is a spanning path S in L(G-t) joining the points uw and vw. There is a point rs of L(G-t) such that $(rs)(v_1w)$ is a line in S. It is evident that either $v_1 \in \{r, s\}$ or $w \in \{r, s\}$. If $v_1 \in \{r, s\}$, then by P we denote the path $(rs)(tv_1) \ldots (tv_k)(tw)(v_1w)$. If $w \in \{r, s\}$, then by P we denote the path $(rs)(tw)(tv_k) \ldots (tv_1)(v_1w)$. If in S we replace the line $(rs)(v_1w)$ by the path P, we obtain a spanning path in L(G) joining the points uw and vw.

Theorem 1. Let G be a connected graph with $p \ge 3$ points. Then $L(G^2)$ is hamiltonian.

Proof. The case when p=3 is obvious. Assume that $p=n \ge 4$ and that for p=1= n - 1 the theorem is proved. The case when $G = K_p$ is simple. Assume that $G \neq K_p$. Then there is a point w of G with degree not exceeding p-2 and such that G - w is connected. By d and d' we denote the distance in G and in G - w, respectively. By F we denote the graph with the points t of G such that $d(t, w) \leq 2$, and with the lines $\tilde{t}\tilde{t}$ such that either $w \in \{\tilde{t}, \tilde{t}\}$ and $1 \leq d(\tilde{t}, \tilde{t}) \leq 2$, or $\tilde{t} \neq w \neq \tilde{t}$ and $d(\tilde{t}, \tilde{t}) =$ $= 2 < d'(\bar{t}, \bar{t})$. Notice that the graphs $(G - w)^2$ and F are line-disjoint and that x is a line in G^2 if and only if it is a line either in $(G - w)^2$ or in F. There are points u and v of G such that v is adjacent to w in G, u is adjacent to v in G and d(u, w) = 2. Obviously, u and v are points both in $(G - w)^2$ and in F, and u has degree 1 in F. By Lemma 1, there is a spanning path S_0 in L(F) joining uw with vw. Similarly, there is a spanning path S_1 in L(F) joining vw with uw. By the induction hypothesis, there exists a hamiltonian cycle H in $L((G-w)^2)$. Consider a point rs of $L((G-w)^2)$ such that (rs) (uv) is a line in H. If $u \in \{r, s\}$, then by P we denote the path (rs) $S_0(uv)$; if $v \in \{r, s\}$, then by P we denote the path $(rs) S_1(uv)$. It is easy to see that if in H we replace the line (rs)(uv) by P we obtain a hamiltonian cycle in $L(G^2)$.

Lemma 2. Let T be any tree with $q \ge 3$ lines. Then $(L(T))^2$ is hamiltonian.

Proof. The case when q=3 is obvious. Let $q=n\geq 4$ and assume that for any q, $3\leq q< n$, the lemma is proved. The case when T is a path is simple. We shall assume that T is not a path. Then T contains distinct points v_0,\ldots,v_k such that $1\leq k\leq q-2$, v_0 adj v_1,\ldots,v_{k-1} adj v_k,v_0 has degree at least 3, v_k has degree 1, and if 0< j< k, then v_j has degree 2. By T_0 we denote the tree which we obtain from T by deleting the points v_1,\ldots,v_k . By u_1,\ldots,u_i we denote the points which are adjacent to v_0 in T_0 ; obviously, $i\geq 2$. There is a hamiltonian cycle H in $(L(T_0))^2$. It is easy to verify that H contains such a line xy of $(L(T_0))^2$ that x is incident with one of the points u_1,\ldots,u_i , and y is incident with v_0 . By P we denote the path in $(L(T))^2$ such that if k=1, then $P=x(v_0v_1)$ y, and if $k\geq 2$, then $P=x(v_0v_1)$ (v_2v_3) \ldots $(v_{g-3}v_{g-2})$. $(v_{g-1}v_g)(v_hv_{h-1})$ \ldots (v_2v_1) y, where g is the greatest odd integer not exceeding k and k is the greatest even integer not exceeding k. If in k we replace k by k, we obtain a hamiltonian cycle in $(L(T))^2$.

Theorem 2. Let G be a connected graph with $q \ge 3$ lines. Then $(L(G))^2$ is hamiltonian.

Proof. Consider a spanning tree T_1 of G. Color the lines of T_1 in blue. Subdivide each uncolored line of G (if any) into two new lines and color one of them in blue and the other of them in yellow (the choice is arbitrary). By T_2 we denote the graph consisting of the blue lines. Obviously T_2 is a tree with at least 3 lines. It is easy to see that $L(T_2)$ is isomorphic to a spanning subgraph of L(G). This implies that $(L(T_2))^2$ is isomorphic to a spanning subgraph of $(L(G))^2$. By Lemma 2, $(L(T_2))^2$ is hamiltonian. Hence the theorem follows.