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1. INTRODUCTION

1,1. We employ the following notation:

1. I is the closed interval [ -1, 1].

2. ¢;(i=1,2,...) are positive constants independent of n as well as of xel
or of x in the interval in question.

3. ¢fx) (i = 1,2, ...) are functions of the variable x such that

led(x)| < ey .

The numbering of ¢; a ci(x) is independent for every section.

1,2. In this paper the zeros of the orthonormal polynomials
1,2a 0,(x) =Y a"x" %, a® >0, n=0,1,...
k
k=0

associated with the function
(1,2v) 0(x) =1 — x)*(1 + x)f "® = J(x). "™

on the interval I are investigated. Here « > —1, § > —1 and u(x) is a real function
satisfying the following conditions:

1. u”(x) exists in the interval [ -1, 1].



2. If we put for brevity
A5(0) = f("z_%{(_‘) o) = A, ) = =2 A, wi) = 4470,

thenfori=1,2,3

(1,20) min (2, B) 2 = J"(t — PP o d)] dt = 3(x)
and
(1,2d) min (a, f) < 3 = 4,0(t) = c,(x).

1,3. In my paper “On a class of generalized Jacobi’s orthonormal polynomials*)
I have established the following differential equation for the above polynomials Q,(x):

(1,3a)

Q"(x)d—d;c [(1 = x%) @u(x) Q(x) + (1 — x%) by(x) Qs(x) + [42 + a(x)] Qulx) = 0.

Herein
(1,3b) A= J(n(n + o + B + 1))
(We suppose n to be so large that 4, is real.)

Further
(1,3¢) a,(x) = ncy(x),
(1,3d) by(x) = n71 c4(x),

b,(x) exists in the interval [—1, 1] and
(1,3¢) \ by(x) = n! cs(x) .

1,4. We denote by J,(x) the orthonormal polynomial associated with the function
J(x) on the interval [—1, 1]. J,(x) are normalized Jacobi’s polynomials.

1,5. The results of my investigations are contained in the second chapter. The

theorems on the zeros of the polynomials J,(x) are a generalization of the known
results of Szeg® (See [7] p. 9 and [1] pp. 135—136).

1y See Cas. p&st. mat. 97 (1972), 361—378.



2. THEOREMS ON THE ZEROS OF THE POLYNOMIALS Q,(x)

2,1. Let {x,,};>, be the increasing sequence of the zeros of Bessel function I(x)
of thefirst kind and of order v.

Let {x{}z_ . be the increasing sequence of zeros of the polynomial Q,(x).
Let k = 1,2, ... be independent of n. Then for n - +

2
(2,1a) X = —1+ ’2‘_"; [1 + O(n~Y)]
n
and
2
(2,1b) X = 1= 222 [1+ 0(n7Y)].
n

(The constants in O depend on k.)
The proof of this theorem is contained in Chapter 5.

2,2. Let Q,(x) = J,(x) where J,(x) is defined in Section 1,4. If we put
(2,2a) jlo, B) =j = Ho? + 3ap + 30 + 38+ 2), j, =j(B a) ,
then

2 2 .
(2,2b) x;;->=_1+m1_'d+ﬂ+l_(a+p+1) +jy
2n2 n n2

CEYES | CEY X 1)2]] _ i [1 _ %LM] +0(n™)
. 24n* n

and

2 2 4 s
(2>2c) xsl,,_)k+1=1__3_€}i‘1_a+ﬂ+1_(a+ﬁ+l) tJ_
2n? n n?

@+ B2+ e+ xeu [ _ A+ B+ 1)
n? 24n*

] + 0(n~9).

n

The proof is in Chapter 6.

2,3. Theorem on the distance of the consecutive zeros of the function Q,(sin z).

Notations.
(2,30) ) 3=, =0; |o| >3=0a = 3 (@3- 1);
(2.3b) Bl <3=8,=0; || >+=p = -3 /(4> - 1).



do > &5, Bo < B, are arbitrary real numbers independent of n;

(2,3¢) ’ a,e(ag, n), bye(—n,po)
are arbitrary numbers which may depend on n;
(2,3d) Jomf-E, E_ %Y g _F .5 EY

" 4’2 n " 2 n’ 4
(2,3¢) Ay =J(n(n + « + B + 1)) ;

1 — 4q? 1 — 482

2,3f x) =2+ : X)=A24+—;
( ) ‘ Q( ) 4x2 Ql( ) 4x2

(2,3g) =z, and z,, z; < z, are arbitrary two consecutive zeros of the function

Q,(sin z) .

Assertion.
(2,3h) [z1,22] € Ty =2, — 2z, = mp~ /2 (g - z,) + o™
and
(2,3i) [21,2:] € TP = 25 — 2, = mp; 12 (— g + z,) + 6 .
Herein
(2,3)) |60 < en™%(na,® + 1),
(2,3k) |69°] < en~*(n|b,|™2 + 1),

where ¢ is a constant independent of n, a,, b,, z, and z,, that is, ¢ is the same num-
ber for any two consecutive zeros z,, z, located in J, and JV respectively.

For the proof see Chapter 7.

2,4. Let 6 € (0, /4) be a constant independent of n and

T T
2,4a Js=—-=-+06,-—9).
(2.42) v=(-3+83-9)

Then in terms of the notation of Section 2,3

(2,4b) [znz:] e Jy=> 2z, — 2, = Liw,
n

where

(2,4¢c) , |9, < en™2,

c is a constant with the same properties as that in (2,3]) and (2,3k).
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For the proof see Chapter 7.

2,5. For the zeros of the function J,(sin z) the following inequalities hold if we
employ the notation introduced in Section 2,3

(2,5a) | [60"] < en~*(na, > + n7Y),
(2,5b) |69°] < en™2(n|b,|73 + n™?),

where 6, 65" are defined by (2,3h) and (2,3i) respectively.
For the proof see Chapter 7.

3. A TRANSFORMATION OF THE FUNDAMENTAL DIFFERENTIAL EQUATION

3,1. We shall employ the following notations

(3,1a) z = arcsin x ,

(3’1b) y’ = %f s .y” = % { ]

(3,1¢) o(z) =(1 + o+ p)tgz + (¢« — B)secz,
(3,1d) J(x) = (1 — x)* (1 + x)P,

G19) 4] = J{gos = H{gin2]) = exp [- : J :co(t) dt],
(3.1f) 1z) = Ho'(2) — 30(2)],

(3.1g)  a,(z) = 42 + a,(sin z) + ¥(z) — 4[b;(sin z) + u"(sin z)] cos® z —
— 3[b(sin z) + w'(sin z)] {[b,(sin z) + u'(sin z)] cos® z — 2w(z) cos z — 2sin z} .

(Here b,(x) = d_l;,gc) , u®(sin z) = % (k=1, 2))

G old) = 02 al)ere {é jz/z[b,(sin {) + w(sin )] cos ¢ dt}.

3,2. In the above notation the function Q,(sin z) is a solution of the differential
equation

(3,2a)  y" + {[u'(sin 2) + b,(sin 2)] cos z — w(2)} ' + [AZ + a(z)] y =0



and the function q,(z) satisfies the differential equation
(3,2b) V' +az)y=0.
Proof follows from (1, 3a).

3,3. Remark. In the following all the assertions are derived for x € [0, 1], that is
for z € [0, n/2]. The same assertions hold for z € [ —x/2, 0] if we replace a by .

34. For{ - 0+

(3,4a) . q(g — C) = 2f-a)/2 C¢+1/2[1 + O(Cz)] ,
(3.:4b) w(g—z)=(1 +20) 7 — 3 (x + 38 + 2) L + 0(%),

(3,40) : (1‘2- _ c) — 1(L— 43 4+ O(0),

where j is defined by (2,2a).

Proof. Trivial.

3,5. For brevity, put

n 49> — 1
(3,5a) () = «, (E - () -2+ e
Then :
(3,5b) Le [o ’2—‘] = |o,0)| < en.

The proof follows from (3,5a), (1,3c), (1,3d), and (1,3e).

3,6. Let |o| > 1. Denote by o™ the greatest real zero of the function %,(z) defined
by (3,1g). Then for n - +©

(3.62) a® = —2’5 = i:—‘[l +0 (i)]

where for brevity
(3,6b) a = 1./(4a® - 1).

Remark. For almost all values of n there exists one and only one positive zero
of a,(z) (provided |«| > 1).
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Proof. According to (3,5a) and (3,5b) it is

g — o™= &%i {(40:2 - 1)/[1 + A %w, (7—; - a("))]}”2= Eng [+ o(n™)].

3,7. Let |¢| > % and let ay > «, be a constant independent of n, where a, is defined
by (3,6b). Then for z € [0, n[2 — ao/n]

(3,7a) 0<a(z)<en™?

for almost all values of n.
If a < —1, then (3,7a) holds for every o > 0.

Proof. Put
1 — 4a?
x) = .
/) 4x?
Hence f(«;) = —1. Since f(x) is an increasing function for x > 0, there exists in

virtue of (3,5a) and (3,5b) a constant ¢ > 0 independent of n such that for almost all
values of n

e(%, g) =, (g = c) = 410 + 0,0) > 2 + n[/(a) — f(m)] +
+n?f(y) —cn =47 —n® —cn + % —af(4a2— 1) n* > u@aﬁ — 1) n?.
ool T
3,8. For brevity, put
(3,82) Va(x) = 4, (g - x) ;
Then for x - 0+
(3.80) () = 207212 0 (1) [1 + 0(x?)]
where .
(3.8¢) Q,(1)>0.

Proof. For brevity, put

(1) | e(x) = exp {— % j. :/2 [b4(sin £) + u'(sin t) cos ¢ dt} =

/2-x

= exp {— %J‘ [ba(cos t) + u'(cos t)] sin tdt} =1+ O(x?*) for x—-0+.
0



Further
(2 * Qucosx) = Q1) + O(x?).

Since
W(x) = Qulcos x) g (g - ) o),

(3.8b) follows from (1), (2) and (3,4a).
By a well known theorem

0.x) 0 for x=1

and in virtue of (1,1a) it is Q,(+0) = + co. This shows that (3,8¢c) is true.

4. LEMMAS

4,1. In the following we employ the Bessel functions I,(x) of the order « and of the
first kind as well as the Bessel functions Y,(x) of the order & and the second kind.

It is well known that

(4.1) ()= m

v=ovIl(a + v + 1)

and provided « = 0 is an integer,

@41b)  Y,(x) = % [c +1g g] L(x) — i T (;l)ii)_ o, — S,x).

v=0 v!(v + a)!

Herein C is the Euler constant and

o>0=0, = 1, a=0=0,=1,
k=1 k
vl v+¢1
v>0=0, = -+ -,
‘ =1k kglk

Lt @= V= 1) (g) |

So(x) =0, a>0=>5,(x)=-Y
T v=0 v!

4,2. Put '
(4.20) o(x) = (x) I(x)
8



and if « is not an integer,

(4,2b) w(x) = /(%) I-o(x) -

If « is an integer, then
(4.20) w(x) = (x) Yfx) -

v(x) and w(x) are linearly independent solutions of the differential equation

: ” 1 — 442
(4.24) y +(1+ - )y=0.

(See [I] pp. 29—-30.)

It is easily seen that for any real number k the functions v(kx) and w(kx) are linearly
independent solutions of the differential equation

) 1 — 4a?
(4.2¢) y +[k2+ = ]y:O_

(See [1] p. 31.)

4,3. The following theorem will be used:

Let p(x) and q(x) < O be real functions continuous on the interval (a, b) and let
¢(x) be a solution of the differential equation

(4,3a) y + p(x) y +4q(x)y=0.

Then the function ¢(x) . ¢’(x) has at most one zero in the closed interval [a, b].
Herein a or b are also zeros of ¢(x) ¢'(x) if for i = 0,1

lim ¢®(x) =0 or lim¢?(x) =0.
x=b—

x—a+

Proof. (See [2] pp. 164—165.)

4,4. Let {x,,}:>, and {x,};>, be the increasing sequences of all the positive
zeros of the functions v(x) and v'(x) respectively.

Let {,}nx0 and {{;}3o be the increasing sequences of all the positive zeros of
the functions y,(x) and y,(x) respectively.?)
If || > 3, then

(4,4a) Xgg > Xgq > 3 /(40 — 1) = a; %)

2) See (3,82).
3) See (3,6b).



and

(4,4b) &, (g - c,) > a, (g - c;) >0.

Proof. Since
o0) = $(0) = 0

and y = v(x) is a solution of the equation (4,2d) our assertion is a consequence of
theorem in Section 4,3.

4,5. Let v(x) and w(x) be the functions defined by (4,2a), (4,2b) and (4,2c) respec-
tively and let y,(x) be defined by (3,8b).

For brevity, put

(4,5a) W(x, t) = v(x) w(t) — o(f) w(x),
(4,5b) 171 = o'(x) w(x) — v(x) w(x),
(4.5) L o=@ + 1),

where 4, = \/(n(n + « + B + 1)) and

(459 0 = O{n)

is a real number depending on n.
Further, put

v(l,,x) B 2—(a+p)/zl:+ 1/2

i#39 Va =,Lil§1+ Ua(¥) T+ 1) Q1)
(4.5f) (%) = Wn Valx)

and '

(4.58) Bu(t) = w,(t) — 74

where w,(t) is defined by (5,5a).
Then for x € (0, 1)

(4’5h) xn(x) = v(llx) - Qn(x)
where
(45) o) = 117" j “Ba(i) W, 1) 2:(1) .«

Proof. 1. Denote by k; (i = 1,2, ...) positive constants independent of x and ¢
in the interval [0, 1]. (They may depend on n.)

10



In virtue of (3,8b) and (3,5b) we may write for ¢ € (0, 1)
(1) ()] < ka2, [B(1)] < ks -

By applying (4,1a) and (4,1b) we deduce that for x € (0, 1) and 1€ [0, 1) and x > ¢
@) Wl L) < ks 6(x ) = ks[(xt™ ) + (2™ J(xt) Ig™ |it’£| ,

where my = 1if ¢« = 0, and my = 0 if « + 0.
From (1) and (2) it follows for x € (0, 1)

x
(3) IQ,,(X)I < k4j pr2 5(x’ t) dt < ksxa+5/2 .
0

2. The function y,(x) defined by (4,5f) is a solution of the differential equation

y”+a,,<§—x>y=0.

Hence

@ 26 + [+ 5 10 = A .
By (4) we derive the equation

(5) 1(%) = Cyv(lx) + C; w(lx) — (%),

where C, and C, are constants.

Let o be non integer. Making use of (3,8b), (4,1a), (4,5¢) and (3) we deduce by (5)
that for x - 0+

a+1/2 a+1/2 —a+1/2
(1x) + O(x**5/%) = Cy(lx) + O(x**5/%) 4 Ca(lux [1 + 0(x?)].

2I(a + 1) 2T(x + 1) 27°I(1 — «)
Hence

©) c, + 2;{1(;“_:)9 172531 4 0(:3)] C; = 1 + O(x?).
From (6) it is easily seen that

@) «>0=C, =0(x*=>C, =0, C, =1

and

a<0=>C1=1+0(x_2a)=C1=1, C2=O(x2—2¢)=>C2=0-

11



If « is an integer, then by (3,8b), (4,1b) and (3) we deduce that for x — 0+

(%) i + O(x*+5/%) = Cy(lyx)+12

+ O xtx+5/2 +
2 I« + 1) 2Tz + 1) =)

* _11;[2’151:"]?‘;—__&_1.%2_1) lgx + za(a - l)! (lnx)’““‘lll] [1 i O(xZ)] C; .

Hence we deduce C, = 1, C, = 0 by a similar argument as above.

4,6. Let a > 0 be an arbitrary number independent of n and

(4,6a) ‘ I, = (0, 5)-

n
Further denote by y,(x) a real function defined in the interval I, such that

(4.6b) tel, = |y < y,.
Put

(4,60) o) = ry,(t) W(l,x, L) (0) dt ,

where x,(x) is defined by (4,5f).
Then

(4,6d) xel, = |o,(x)] < cyn™y,.

From (4,51) and (4,6d) we deduce that
(4,6¢) xel, = |o(x)| < e;n7t.

Proof. 1. For brevity, put (
(1) (%) = xT 2 (%), S, = sup |L(x)]-

e xelq

Making use of (4,6b) and (2) in Section 4,5, we obtain from (4,6c)

(2 x€l, = |o,(x)] < 37, xS, 312 < cqpnTiSx* 12,

2. Put y,(t) = B,(t), where (1) is defined by (4,5g). In this case we may put y, =
= csn so that we obtain from (4,5i) and (2)

©) x€l, = |0 (x)] < cen™nn"x**12S, < e~ ix*tU2S,
Since .
4 x el = |o(l,x)] < cg(lx)*!/?

12 -



and by (4,5h)
%) (%) = [o(l) — ea(x)] x77172
we deduce by (2) and (5)
S, < con**V? 4 ¢,on71S, =S, <c, 0?2,

Applying this result we obtain (4,6d) from (2) and (4,6¢) from (3).

4,7. Let v(x) be defined by (4,2a) and let x,; (k = 1,2, ...) be the zeros of v(x)
introduced in Section 4,4. Let A, > 0 satisfy the condition

(4,7a) A, =o(1) for n—> +o.
1y

(475) Xa0 = 0, %,k + N € (Xgpmy + €1, Xops1 — €1) and |v(x, . + nn)| < 4
then

no

(4,7¢) In| < cn'4,.

Proof. For brevity, put x, ; = x; and x, + np = b.

Let I, be the interval (b, x;) if n < 0 or (x;, b) if n > 0. By (4, 7a) and (4,7b) we
deduce

(1) « xed, = [u(x)| < 4, .
Further

2 v(b) = nn v'(x,) + n®n* V"(¢),
where:

3) ¢el,.

From the equation (4,2d) we obtain

@) v(8) = [““2 =T 1] ")

4¢2

Making use of (4), and (1) we deduce
() [o"(&)] < es[ol€)] < cadn
Since v'(x,) # 0 it follows from (2), (5) and (4,7a) that
Ay > [o(b)] > nln [(xe)| — es|o"(@)] > mnlv'(x)] — coda

for almost all values of n.

13



4,8. Following the notation of Section 4,6 we put

(4.8a) ’ h(x) = v(lx) + n,(x),
where 1, is defined by (4,5c)

(4,8b) xel, = |n(x)| < 4,.
Here A, satisfies (4,7a).

Let {&})_, be the increasing sequence of all the zeros of the function h,(x)
contained in the interval I,. Then the following assertions are true:

a) For every positive integer k there exists an integer r > 0 such that for
n— 4o

(4,8¢) & = "l [1+ 0(4,)].

b) For every integer m > 0 there exists an integer s such that for n - + o0

(4,8d) T i‘l—'" [1+ 0(4,)].

Proof. 1. Let {x, ,}.> be the increasing sequence of all the positive zeros of the
function v'(x).

From (4,8b) and (4,7a) we deduce the following assertion A: For every. integer
v > 0 there is at least one zero of the function h,(x) in the interval (x; /1y, Xq,y+1/ln)-

2. Put

(1) & = 22r 4 171y,
I

where x,, is the zero of the function v(l,x) nearest to the number &,. From the above
proposition

X, X,
(2) ék < a,k+1 < a,k+_2 EI,, .

Ill n

From (2) it is obvious that r < k + 2.
If a > x, 4+, it follows from (4,8b) that

(3)- [n(Ce)| < 4, -
By (4,8a) and (1) we deduce that :
“4) 0 = hy(&) = v(x, + nn) + (&) -

Hence we obtain as a consequence of (3) and (4,8b) that
) |o(x, + nn)| < 4, .

14 -



The proposition of Section 4,7 yields
|n] < A;n=t.
This inequality shows that (4,8c) is true.
3. Let

(6) xa,m = fs _ nl"—l ’ ,

where £, is a zero of the function h,(x) nearest to the number x, ,,/l,. From the above
assertion A we see that

’
xa,m+2

(7) a> x;,m+2 = Es < l

el,.

Making use of (4,8a) we obtain
0 = (&) = v(xXem + nn') + n(&) -
Hence, in virtue of (7) and (4,8b)
(8) |o(xm + nn')| < A4,
Hence by the statement of Section 4,7
] |n| <n'4,.
(7) and (9) establish (4,8d).

5. PROOF OF (2,1a) AND (2,1b)

5,1. In the notation introduced in Section 4,4, for k = 1,2, ... independent of n
it is

(5,13) Ck =

xa,k

[t +0(m")] for n> +w.
n

Proof. 1. The zeros of the function y,(x) coincide with the zeros of the function
Xa(x) defined by (4,5f). Let I, be defined by (4,6a) and choose a sufficiently large.

In virtue of (4,5h) and (4,6¢) the theorem of Section 4,8 yields for k = 1,2, ...
and m = 1,2, ... provided that {, €I, and x, ,[n €,

(1) =21+ O(n™")]
and
@) b= if [1 + o(nY)].

15



Herein x, /I, is the zero of v(l,x) nearest to the number {, and {; is the zero of y,(x)
nearest to the number x, /1,

2. Putin (1) k = 1 and in (2) m = 1. Then

(3) nly 2 Xg1 + O(n™)
and
4) nly < %, + 0(n7?).
From (3) and (4) we see that
5) ' ¢ =11 4 o(nY)].
n

Hereby (5,1a) is established for k = 1.
3. Let w,(x) be defined by (3,5a) and put

(6) sp = sup |w,(x)|.

xe[0,n/2]
In virtue of (3,5b) we may choose k, > 1 independent of n and g, such that

(7 kiyn >0, >s,.
Put

(®) L=0n — o).

(5) enables us to choose g, so that

©) sk

Since the functions v(4x) and y,(x) are solutions of the differential equations

s 1 — 4a?
(10) y +[/12+_—_-4x2 ]y=o
and
1 — 4a?
(11) v+ [A,f + 4x2a + w,,(x)] y=0

respectively it follows by the well-known Sturm’s comparison theorem in virtue
of (9) that in the interval [0, {,] there are at most (k — 1) zeros of the function v(4x).
Hence we obtain for the number k and r in (1)

(12) rsk.

16



3. Further, put
(13) kot > p > 5., p=J(A2 +m),
where k, does not depend on n and s, is defined by (6). Choose p, so that
Xa,1
u
Then there are at least (k — 1) zeros of v(ux) in the interval [0, ,]. Hence by (1)

(14) ¢ >

(15) G =221 + o(n7Y)],
n

where

(16) t=>k.

From (1) and (15) we deduce that

0=1x,,— X+ O(n™").
Hence

(17) Xep = Xgys=>T=1.

(12), (16) and (17) show that r = k.
5,2. The proof of (2,1b). By (5,1a) we deduce
x™, = sin e =1 = Faktiry 4 o(p-?
, (2 » 21 [1 4 0(n™)
forn -» + .

5,3. For the proof of (2,1a) see Remark 3,3.

6. PROOF OF (2,2b) AND (2,2¢)

6,1. 1. Put Q,(x) = J,(x). Then by (3,5a)

" o) = o) - L2
Put in (4,5c) and (4,5g) |

2) b= (A2 + )2,

3) Bal) = @(t) —J -

where j is defined by (2,1a).
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Let I, be defined by (4,6a) and a sufficiently large. It is easly to see from (3,4c)
and (1) that -

@ tel, = |B,()| < ein™2.
Then by (4,5i) and (4,6d)
(%) xel, = IQ,,(x)I <c,n4

for in this case y, = c;n~ 2.

Denote by {{;};-, the increasing sequence of all the zeros of J,(sin z).

By the theorem of Section 4,8 and by (5) we deduce that for every k = 1,2, ...
there exists an integer r > 0 such that

(6) G =2+ 0(n"%).
By (5,1a) we have

(7) G = ’-‘;'f +0(n"?).
From (6) and (7) it follows that

0=x,, — X4 + O(n~").
Hence
Xep = Xgp=>r =k
so that by (6)

®) Le==2%+ 0(n"%).
2. Let Q,(x) = J,(x). Then
2 4
() X\pay = oSy =1 — %" + —2% + 0(n~°).

From (2) it is obvious that

(10) ,
nzl,,‘2=1_ﬂu_%~[§_+_w+%]2_(a+ﬁ3+1)3+0(n_4)=
n . n n n . n
_q_etB+1l (@Bt D+ (@+p+D[H+@+B+DT
n n? )

+ 0(n™%).
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Further

(11) nrt =1 - A2+ B +1)
n

+ 0(n7?).

From (8)—(11) we may deduce (2,2c).
As for (2,2b), see Remark 3,3.

7. PROOF OF THE INEQUALITIES IN SECTIONS 2,3; 2,4 AND 2,5

7,1. In the notations introduced in Section 2,3

(7,1a) ze J, = c;n? < o,(z) < c,n?.
Proof. (7,1a) is a consequence of (3,5a), (3,5b). See also (3,7a).
7,2. Let z, and z, be defined by (2,3g). Then

(7,2a) (z1,2) € Jy=> 2, — 2y < ¢yt

Proof. Employing Sturm’s comparison theorem we obtain from the differential
eugation )" + a,(z) y =0

(1) z, — z; < msup o, V(2).

zedn
Now, (7,2a) is a consequence of (1) and (7,1a).
7,3. In the notation of Section 2,3

(138) [z 25] < [20 2] = |e (g - ) . (5 - )

< ¢yn’a,’?

Here ¢, does not depend on z,, z; (i = 1, 2).

Proof. For brevity, put

e
Il

(1 =1,2).

N[

From (2,3d) it follows

’ a'l
éi > .
n
Now, (7,2a) yields

|g(€’1) _ Q(é‘:!)l — |a2 l(él fz) (51 + fz) < g i< csn?a?

1'2
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7,4 According to the notation introduced in the preceding chapter
(7,4a) 8, = |y 113(z1) — oy V3(z5)| < eyn*(na;? + 1).
Proof. Making use of (7,3a), (3,5a) and (3,5b), we obtain )
lon(z3) — oa(z2)] = le(€2) — e(€1) + @u(82) — @u(&1)] < can(na,” +1).
Further, it follows from (7,1a) and (7,2a) that
Oy = [m(81) — an(E2)] [(€1) o(€2)] "% [Voul2) + Veu(E2)] " <

< cyn(na,? + 1).

7,5. The proof of (2,3i).

Put

s; = sup a, *(2), s, = inf o, '?(z).
ze(z1,22) ze(z1,22)

Making use of Sturm’s comparison theorem, we deduce by the differential equation
(3,2v)
Sy < Zy — zy < WSy .
Hence

(1) Zz — Zl = TCSZ + 9(31 - S2)
where 9 € (0, 1). Put

(7,52) sy =0, (zy) + I, sy =, P(zy) + 9, sy — s, = 9.
From (7,4a) it follows for i = 1,2,3
(2 || < eyn~?(na,® + 1).

By (7,5a), (7,1a), (3,5a), (3,5b), (1) and (2) we deduce that
(7,55)  z, — z; = ma; 3(zy) + 8 = ng'*(’—zr - kl) + 0(n~?) + 9
where 99" satisfies (2) for i = 4.

7.6 The proof of (2.5a). It follows from (3,5a) for the polynomials J,(x) that

1) @, (§) = 7 (g - C) + 4“:{: Ly

Hence

) : ’-2‘ —led,=|w(Q)] < e -
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