

Werk

Label: Table of literature references

Jahr: 1973

PURL: https://resolver.sub.uni-goettingen.de/purl?31311157X_0098|log72

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen Hence the integral $K \int_a^b f \, dg_R = K \int_a^b f \, dg_c + K \int_a^b f \, dg_{Rb}$ exists; this statement is an easy consequence of Prop. 2,2.

We can summarize the above results for the case $N_S = \emptyset$ in the following

Theorem 3,1. If $f:[a,b] \to R$, $g \to BV(a,b)$ is such that g(t+) = g(t-) for some $t \in (a,b)$ implies g(t) = g(t-) and if $Y \int_a^b f \, dg$ exists, then also $K \int_a^b f \, dg$ exists and both integrals are equal.

In the general case, i.e. if $N_S \neq \emptyset$ the existence of $Y \int_a^b f \, dg$ implies not necessarily the existence of $K \int_a^b f \, dg$. This fact is shown in Example 2,1.

If we suppose that f is bounded on $N_S(|f(t)| \le M$ for $t \in N_S$) then we define $\tilde{f}(t) = f(t)$ for $t \in N_S$, $\tilde{f}(t) = 0$ for $t \in [a, b] - N_S$. Hence \tilde{f} is bounded and from Corollary 2,1 we obtain the existence of $K \int_a^b \tilde{f} \, dg_S$ while Prop. 2,2 guarantees the existence of $K \int_a^b f \, dg_S$. Corollary 2,1 gives moreover $K \int_a^b f \, dg_S = 0$ because $g_S(t) = g_S(t+) - g_S(t-) = 0$ for all $t \in [a, b]$. This yields the following

Theorem 3,2. If $f:[a,b] \to R$, $|f(t)| \le M$ for $t \in N_s$, $g \in BV(a,b)$ and $Y \int_a^b f \, dg$ exists then $K \int_a^b f \, dg$ exists and both integrals are equal.

Remark 3,1. Evidently, if the set N_S is finite, then the boundedness of f on N_S can be omitted.

Corollary 3,1. If $f, g \in BV(a, b)$ then $K \int_a^b f \, dg$ exists and equals $Y \int_a^b f \, dg$.

Proof. This statement follows from Corollary 1,3 which states the same result for the Young integral, from the boundedness of f and from Theorem 3,2.

Finally, we mention the known fact (see [1]), that if we set [a, b] = [0, 1], g(t) = t, $f(t) = \sin(1/t) - (1/t)\cos(1/t)$, for $t \in (0, 1]$, f(0) = 0 then the Perron integral $P \int_0^1 f \, dg$ exists and by Theorem 2,1 also the integral $K \int_0^1 f \, dg$ exists. It is also known that for this choice of f and g the Riemann integral does not exist. Since g(t) = t is continuous in [0, 1] we obtain that $Y \int_0^1 f \, dg$ cannot exist (cf. Theorems 1,3, 1,4) and so we have an example of functions $g \in BV(a, b)$, $f: [a, b] \to R$ such that $K \int_a^b f \, dg$ exists but $Y \int_a^b f \, dg$ does not.

Literature

- [1] Aumann G.: Reelle Funktionen. 2. Aufl. Springer-Verlag Berlin 1969.
- [2] Hildebrandt T. H.: Introduction to the Theory of Integration. Academic Press, New York—London, 1963.
- [3] Kurzweil J.: Generalized Ordinary Differential Equations and Continuous Dependence on a Parameter, Czech. Math. J. 7 (82), (1957), 418-449.
- [4] Saks S.: Theory of the Integral, Monografie Matematyczne, Warszawa-Lwow, 1937.

Author's address: 115 67 Praha 1, Žitná 25 (Matematický ústav ČSAV v Praze).