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STEFAN SCHWABIK, Praha
(Received October 19, 1971)

The considerations in this paper are limited to the closed interval [a, b], -0 <
< a<b < 4+ and to finite real functions defined on this interval. For a real
function g : [a, b] > R we denote by var, g the obvious (total) variation of g on
[a, b]. The set of all real functions g : [a, b] > R with varbg < + oo is denoted
by BV(a, b).

1. THE RIEMANN AND YOUNG INTEGRALS.

Let 2 be the set of all sequences D = {«y, y, ..., %} of points in the interval [a, b]
such that

(1,1) a=ao<a1<...<ak=b.

We consider finite sequences (subdivisions of [a, b]) B = {a, 7y, &y, ..., T, %}. For
agiven D = {a, ay, ..., %} € 2 we denote by #*(D), (D) the sets of all subdivisions
B = {0, Ty, 3, ..., T4 @} such that, respectively,

(1,2) a) @ =1, 2q, b) oy <7 <a
forallj=1,2,..., k.
On 2 we define the binary relation > in the following manner: for D, D' € & we

have D’ > D if D’ is a refinement of D, i.e. if any point a; from D appears also in D'.
If we define |D| = max |o; — a;_,| for D € 2 then another binary relation > may
j= k

,,,,,

J
be defined on 2 by D’ > Dif |D'| < |D|.
It can be easily shown that (2, >) and (2, >) are directed sets.
Let now be given finite functions f, g : [a, b] — R; for every B = {ao, 7y, ay, ...
«++» Tps 0} satisfying (1,1) and (1,2) a) we put

(13 R(B) = £/(5) (o) - (0s-)-
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Definition 1,1. The function f:[a, b] > R is Riemann-Stieltjes integrable
(Riemann-Stieltjes norm integrable) on the interval [a, b] with respect tog :[a, b] —»
— R if there is @ real number I such that to every ¢ > 0 there exists D € 9 so that

|[R(B) —I| < ¢

for all Be #*(D) if D > D(D » D). The number I will be denoted by R [ fdg
(NR [2fdg) and is called the Riemann-Stieltjes (Riemann-Stieltjes norm) integral
of f with respect to g on [a, b].

Supposing that for the function g :[a, b] > R the limits lim g(s) = g(¢t+),

s—t+
lim g(s) = g(t—) exist for all ¢ € [a, b] (for the endpoints of [a, b] the corresponding
s t— .

onesided limits) then we put for f : [a, b] -» R and B = {ay, 1y, ..., 7, %} satisfying

(1,1),(1,2) b)

(L) ¥(B) = 3 [/(05o0) (oas-1+) = 0(05-1) + ) 0ls,) — olsy-1 ) +
+1(0) (6(e) — alz,-))] =

[(ty-1) A%0(051) + £(5) (oay=) — 0y-1+)) + () A™g(w)] =

rvja

J

1

= 3:1(0) Ba(e) + 31(5) a(o5-) = 0 5,-1+)

where A*g(x;) = g(a;+) — g(o)), A”g(w;) = g(o;) — gla;—), j=1,2,....,k -1,
A*g(b) = A~g(a) = 0 and Ag(a;) = A*g(x;) + A7g(2;),j =0,1,2,..., k.

Definition 1,2. If for g : [a, b] — R the limits g(t+), g(t—) exist for all t € [a, b]
then the function f : [a, b] — R is said to be Young (Young norm) integrable on the
interval [a, b] with respect to g if there is a number I such that to every ¢ > 0
there exists D e 9 so that

[Y(B) — 1] < ¢

for all Be #(D) if D > D(D » D). The number I will be denoted by Y [} fdg
(NY [2fdg) and is called the Young integral (Young norm integral) of f with
respect to g on [a, b].

Remark 1,1. From Def. 1,1 and Def. 1,2 it is clear that if NR [?fdg, NY [} fdg
exist then also R f,',’ fdg, Y[2fdg exist respectively, because evidently D > D’
implies D > D’. The concept of the Stieltjes type integral from Def. 1,2 is in detail
described and studied in the book [2] (cf. I1.19.3 in [2]).

In the sequel we suppose that g € BV(a, b). Hence Y(B) from (1,4) is defined, because
g(t—), g(t+) exist for any t € [a, b].
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For the Riemann-Stieltjes integral the following result is known (cf. I1.10.10 in [2]

or [1])

Theorem 1,1. I f : [a, b] —» R, g € BV(a, b) and R [} f dg exists, then f is bounded
on a finite number of ‘closed intervals which are complementary to a finite number
of open intervals on which the function g is constant.

In [2] (Theorem 19.3.1 in [2]) the same statement is asserted, R [ fdg being
replaced by Y f: f dg. Unfortunately, this statement does not hold in general. This
fact can be demonstrated in the following way: Let g € BV(a, b), g(a) = g(b) =
= g(t+) = g(t—) for all t € (a, b) (i.e. g is different from a constant on a countable
set of points in (a, b)). Further let f : [a, b] — R be an arbitrary finite function. For
any De 2 and B = {ay, 1y, &y, ..., T, 0%} € B(D) we have

k k
Y(B) =j§0f (o) Ag(a;) + z::lf (7)) (9(2;=) — g(2;-1+)) = 0
because g(a;+) = g(o;—) and Ag(a;) = 0. This yields the following.

Proposition 1,1. Let g € BV(a, b), g(a) = g(b) = g(t+) = g(t—) for all t e (a, b).
Then Y [} f dg exists and equals zero for every finite function f : [a, b] - R.

Example 1,1. Let us define g(1/(k + 1)) =275 k = 1,2,..., g(t) = 0for [0, 1] —
— {1/(k + 1)};=;. We put f(1/(k + 1)) = 2% £(0) = f(1) = 0 and we suppose that f
is linear in [4, 1], [1/(k + 2), 1/(k + 1)], k = 1, 2, ... The Young integral Y [ofdg
exists by Proposition 1,1 and equals zero by the same Proposition. Any finite number
of closed intervals which are complementary to a finite number of open intervals on
which g is constant contains necessarily an interval of the form [0, «], @ > 0 on
which g is not constant and the function f defined above is not bounded. Hence we
obtain that Theorem 19.3.1 from Chapter II. in [2] is false.

For the Young integral the following Theorem (an analogue to Theorem 1,1}
holds:

Theorem 1,2. If f : [a, b] = R, g€ BV(a, b) and Y [ f dg exists, then f is bounded
on a finite number of closed intervals which are complementary to a finite number
of open intervals J; = (a;, b;), a; < b, i = 1,2, ..., I such that g(a;+) = g(b;—) =
=g(t+) = g(t—) forallteJ,i=12,..,1

Proof. By definition for every & > 0 there exists a De 2 such that |Y(B) —
—Y[.fdg| <e for all Be #(D) if D> D. We choose a fixed D = {xg, %, ..
.oy 0} € D, D > D. We have evidently

[¥(B)] = Ijiof(%) Ag(y) +élf(71) g(o;=) — g(oaj-s+))| < [V [afdg| + &
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for all Be #(D), i.e. for all 7; € (a;_, a;), j = 1,2, ..., k. Hence there is a constant

K>0(K=| Xk:(‘f(a,) Ag(a;) + |Y [2f dg| + &) such that
Jj=

(19 |376) 0(6,-) - o621 +)] 5 K

forallt,e(aj-q, @),/ =1,2,..., k.

Let us suppose that f is unbounded in some («;_, ;). If g(o;—) —g(@—1+) + 0
then f(z;) (9(«;—) — g(2;—(+)) would be arbitrarily large for a suitable choice of
;€ (2j-1, @;), but this contradicts (1,5). Therefore we have necessarily g(a;—) =
= g(a;-1+) = ¢, where c is a constant. Let now a € (o;_, a;) be given; by the as-
sumption f is not bounded either in («;_, @) or in (a, a;). If we add the point a to D
then we obtain D' = {cxo, O0gs. « wvs Obigy o Oy Oy 45+ 4 43 ozk} €2 where evidently
D’ > D > D and the same argument as above gives either g(a—) = corg(a+) = c.
In this way we obtain that if f is not bounded in some («;_,, ;) then g(a;—) =
= g(2;—1+) = cand for any a € («;_,, o;) we have either g(a+) = corg(a—) = c.
Since we suppose g € BV(a, b), the limits g(¢+) and g(t—) exist for any t € (a;_,, o;)
and it is a matter of routine to show that g(a+) = g(a—) = ¢ for all a € (a;_4, @;).
This proves the Theorem, since the number of intervals («;_,, «;) is finite.

Remark 1,2. Evidently in Theorem 1,2 the assumption g € BV(a, b) can be replaced
by the requirement that the limits g(¢+) and g(t—) exist for all ¢ € [a, b] (with the
corresponding onesided limits at the endpoints of [a, b]).

Corollary 1,1. Let g € BV(a, b) be given and let J, = (a;, b)), i =1,2,...,1 be

a finite system of open intervals in [a, b] such that g(a,+) = g(b;)— = g(t+) =

= g(t—) holds for all te J,. If for f :[a, b] — R the integral Y [} fdg exists and
4

if f:[a, b] > R is such a function that f(t) = f(t) for all te[a, b] — U J; then
f=1

Y[2fdg exists and Y [} fdg = Yj'f,’fdg. The same statement holds also for the
Young norm integral.

The proof follows easily from the definition of the Young integral and from the
fact that the term from Y(B) (cf. (1,4)) which corresponds to some [a;_, ;] = J;
equals zero for any function f.

The Young integral is‘an extension of the Riemann-Stieltjes integral; the following
theorem holds:

Theorem 1,3. (cf. 11.19.3.3 in [2]). If f:[a, b] > R, g€ BV(a, b) and R [} fdg
exists then Y [} f dg exists and the two integrals are equal. (The same holds for the
norm integrals.)

In the opposite direction we have the following

240



Theorem 1,4. (cf. 11.19.3.4 in [2]). If f : [a, b] — R, g € BV(a, b) g is continuous
in [a, b] and Y [} f dg exists then R [ f dg exists and both integrals are equal. The
same statement is valid for the norm integrals.

For continuous g € BV(a, b) we can state the following Theorem which is a rever-
sion of the statement given in Remark 1,1.

Theorem 1,5. Let f:[a,b] - R, geBV(a, b),g continuous and let Y [}fdg
exist. Then NY [} fdg exists and Y [?fdg = NY [!fdg.

Proof. Let ¢ > 0 be given. By definition there is a D = {ay, a4, ..., @} € 2 such
that |Y(B') — Y [ fdg| < & for all B'€ #(D’), D’ > D. Regarding Theorem 1,2 and
Corollary 1,1 we can suppose without any loss of generality that the function f is
bounded, i.e. |f(f)| £ M for all t € [a, b]. If this is not satisfied, then we define the
function f by Corollary 1,1 so that f is bounded and we work with the integral
Y [2fdg instead of Y |2 f dg. '

From the continuity of g at all points a;, i =1, ..., k we obtain the existence of
a & > 0 such that |g(r) — g(a;)| < ¢/2Mk provided |t — a;| < 8,i=1,..., k.

Let D = {ag, ay, ..., 0} € P be an arbitrary subdivision such that |D| < & and let
us construct a subdivision D’ which is a common refinement of D and D; evidently
D’ > D. For a given B € #(D) and B’ € %(D’) we give an estimate of [Y(B) — Y(B')|.

If it occurs that o; _; < @44y < ... < Gyyp, < a; then

sj =11 (z) (9(2;) — 9(2;-1)) =
= f(z;) (9(2;) = 9(an+m)) + (9(ansm,) = 9(@nsms=1)) + - + (9(ah+1) — 9(t;-1))

is the term of Y(B) corresponding to «;_; < 7; < a; and the terms of Y(B') are of the
form

sj = f(T;+,,.,) (g(2) = g(a,,+,,,j)) + f(7;+mr1) (g(a,.+,,,_,) - g(ah+m1'1)) T .
e+ S() (9(an+1) — 9(2-1)) -
The difference s; — s; consists of m + 1 terms of the form
() = f(ra+)) (9(4) = 9(v))

where |u — v| < & (since | D| < 6) and either u or v equals to some a;. Hence

|£(e5) = F(za++)) (9(u) — g(0))| < 2M . (s2MK) = ¢[k
and
s; — sj| < e(m; + 1)[k = em;[k + e[k .

If the interval («;_ ,, a;) does not contain points from J then the corresponding terms
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from Y(B) and Y(B') are equal. Hence we have
. [¥(B) - Y(B)| < e X(m; + Dk

where the sum on the right hand side is taken over all j for which («;_,, a;) contains
points from D. The number of such intervals is at most k — 1 and Y'm; < k; this
yields

[¥(B) — Y(B)| < &(1 + ((k — 1)[k) < 2e.

In this way we obtain

¥(B) — ijfdg

< |¥(B) — ¥(B)] + ‘Y(B’) _y 'f s dgl < %

for all B e #(D), |D| < &, ie. NY [? f dg exists and is equal to Y [} f dg.

If g, he BV(a, b), f: [a, b]] = R, |f(t)] £ M for all te [a, b] and if B = {ay, 1y,
Uy, .0y T %} € B(D) for some D = {ay, ..., %} € 2 then we denote

T(B) = 3(0) Ah(s) + 3(2) (hoy-) = hsy-1+)

and similarly Y,(B) denotes the Young sum for g (cf. (1,4)).
Evidently the inequality

(16) |%(B) — Yi(B)| = M varg (g — h)
holds.

Similarly for f, f': [a, b] = R and g € BV(a, b) we have
(1) [¥(B) ~ Y/B)| 5 s 110) - )] vt

k k
for any Be #(D), De P, where Y/(B) =Y f(«;)Ag(x) + ¥ f(t;) (g(e;=) —
j=0 j=1
— (-1 +)) and similarly for Y/(B) (cf. (1,4)).
The inequality (1,6) immediately leads to the following

Proposition 1,2. (cf. II. 19.3.9 in [2]). If g,, g € BV(a, b),n = 1, 2, ... lim var} (g, —
—9)=0,f:[a,b] >R, |f(t)] £ M for all te[a, b] and Y [} f dg, exists for all
n=1,2... then bothY |} fdg and lim Y [ f dg, exist and are equal.

- Corollary 1,2. If g, € BV(a, b) is a pure break function and f:[a,b] > R is
bounded (|f(t)] < M for te [a, b]) then Y [ f dg, exists and we have Y [ f dg, =
=S 10) Al

te[a,b]

Proof. To every pure break function g, € BV(a, b) there exists a sequence g, €
€BV(a, b), n = 1,2,... of break functions with a finite number of discontinuities
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such that lim var® (9» — g) = 0. Therefore by Proposition 1,2 it is sufficient to prove

n—w
that Y 7 f dg exists for any pure break function g € BV(a, b) with a finite number of
discontinuities at the points {t;,...,t,} = [a, b]; let us now prove it: we choose
an arbitrary D = {op, ay, ..., 4} € @ such that {t,,...,1,} = D. For every B =
= {09, Tq5 1, -, Tt &} € B(D), D > D we have

Y(B) = .1(x) 80le) + 2/(2) 0(0,-) = o(oy-1+) = 310 Ao

because g(a;—) — g(x;—y+) =0 for all j=1,2,..,k and Ag(x) =0 if a;¢
¢ {t, ..., t,}. This implies the existence of Y [? f dg and moreover we have obtained
the equality

b v
Y j 7dg = Y.1(0) Aa(1)
From the inequality (1,7) we obtain

Proposition 1,3. (cf. IL. 19.3.8 in [2]). If f,:[a, b] — R, lim f, = f uniformly
in [a, b], g€ BV(a, b) and if Y [ f, dg exists for all n = 1,2, ... then Y [2f dg as
well as lim Y [? f, dg exist and are equal.

Corollary 1,3. If f, g € BV(a, b) then Y [ f dg exists.

Proof. It is known that every f € BV(a, b) is representable as the uniform limit of
a sequence f, of step—functions on [a, b] (see for example 7.3.2.1 in [1]), i.e.
every f, is a pure break function with a finite number of points of discontinuity
{ts, 2 ..., t,,} = [a, b]. We prove that Y [?f, dg exists for all n =1,2,... Let
D € 2 be an arbitrary subdivision of [a, b] with {t,, t,,...,t, } = D; let be D > D,
B = {«g, Ty, ..., T, 0%} € #(D) and let us suppose that a < t; < ... <t, < b.

Hence using the fact that the function f, is constant with values f(a), f(t;+),

i=1,...,v,— 1, f(b) in the intervals [a,t,),(t;, t;4y) i=1,..,v, — 1, (4, b]
respectively, we obtain

¥(B) = 3 1w) Aa(w) + (5D (0(0-) = a(oy-1+) =
= £(6) A%g() + 11(0) Aa(t) +S(6) A"a(b)+
# 7@4) 0t =) = o@+) + F1004) 0C001=) = afech) +

+1(b-)(g(b=) ~ g(t,,+)) = glf(t;) Ag(t:) +:"=Z-:f(t;+) (g(tie1=) = g(ti+)) +
+1(a) (g(t1=) — g(a)) + 1(b) (9(b) — 9(1,,+)) »
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i.e. the Young sum depends only on ¢, ..., ¢, and is independent of the choice of
D > D and B € #(D). This implies that the integral Y [? f, dg exist and has the value
Y(B) evaluated above.

The analogous argument gives the same result if a = ¢t; or b = ¢, . The existence
of Y [% f dg follows now from Proposition 1,3.

2. THE KURZWEIL INTEGRAL
Let for any t € [a, b] a 6 = 6(r) > 0 be given (i.e. & : [a, b] — (0, + 0)).
Put
21 S={(r,t)eR} ast=<bh t—0(r)St=t+ (1)}

and denote by & = ¥(a, b) the system of all such sets S € R%. Any set Se & can
be evidently characterized by a function é: [a, b] — (0, + ).
We consider finite sequences of numbers 4 = {0y, Ty, @y, ..., Ty, @} such that

(22 a=ay <o, <..<o=>b,
(2,3) aj_lé'tjéaj, j=1,-..,k.

For a given set S € &, A is called a subdivision of [a, b] subordinate to S if
(2,4) (tj,)esS for telaj_y,0;], j=1,2,...,k.

The set of all subdivisions A of [a, b] subordinate to S € & let be denoted by A4(S)
(cf. Definition 1,1,3 in [3]). In [3], Lemma 1,1,1 it is proved that A(S) # @ for any
Se&.

Let f:[a, b] = R, g : [a, b] = R be given. For every A = {09, Ty, &y, ..., Ty %}
satisfying (2,2) and (2,3) we put

@9 K(4) = 2(5) (o(e) - o).

Definition 2,1. The function f : [a, b] — R is Stieltjes integrable on the interval
[a, b] with respect to g : [a, b] — R in the sense of Kurzweil if there is a number I
such that to every ¢ > 0 there exists such a set S € & that

(2.6) |K(4) —I| <&

if A€ A(S). The number I will be denoted by K [°fdg and called the Kurzweil
integral of f with respect to g on [a, b]. '

The following proposition is an obvious consequence of the completeness of R
and of Def. 2,1:
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Proposition 2,1. Let f, g : [a, b] = R. The integral K [? f dg exists if and only if
for any ¢ > O there is a set S € & such that

1) K(4) - K(4)] <
for all Ay, 4, € A(S).

Remark 2,1. The above Def. 1. follows the definition given in [3] (see 1.2 in [3]).
In [3] the notation [} DU(z, t) with U(z, 1) = f(t) g(?) is used instead of our symbol
K [} f dg. Some fundamental theorems (additivity etc). about the Kurzweil integral
can be found in [3] (cf. 1,3 in [3]).

Remark 2,2, It is almost evident that if the Riemann-Stieltjes norm integral
NR [? f dg exists then also the Kurzweil integral K [? f dg exists and both integrals
are equal. To prove this fact it is sufficient to set 6(r) = |D| for any ¢ > 0 where D
is the subdivision from Def. 1,1.

Though it is not immediately apparent, the Kurzweil integral from Def. 2,1 is
equivalent to the Perron-Stieltjes integral if we suppose g € BV(a, b).

Remark 2,3. For given finite f:[a, b] > R, g € BV(a, b) we denote by P [!fdg
the Perron-Stieltjes integral of the point function f with respect to the additive
function G of a interval in [a, b] which is defined by the relation G(I) = g(d) — g(c)
for I = [¢, d] < [a, b] (cf. [4]).

The following theorem states the result promised above.

Theorem 2,1. Let f : [a, b] — R be finite, g € BV(a, b). Then the integral K (® f dg
exists if and only if the integral P [} f dg exists and both integrals have the same
value.

Proof. 1. Let P [} f dg exist. From the definition (cf. [4]) we have: For any ¢ > 0
there is a major function U and a minor function V' *) (U and V are additive functions
of interval in [a, b]) of f with respect to G such that

28) U([a. b]) - V([a. b)) < s

Let &, : [a, b] = (0, + ), &, : [a, b] = (0, + ) be the function occuring in the
definition of the minor function ¥ and the major function U, respectively. Let us put
(t) = min (6,(<), 6,(7)) for any 7 € [a, b] and let S € & be the set which corresponds
to & : [a, b] — (0, + ) by (2,1). We suppose that an arbitrary 4 = {a, 7y, &y, ...

*) An additive function of an interval V is said to be a minor function of f with respect to G
on [a, b] if to each point 7 € [a, b] there corresponds a number 6; = d;(r) > 0 such that

(e, d]) < f(z) G([c, d]) = f(z) (g(d) — g(c)) for every interval [c,d] such that 7 € [c,d] and
{d — ¢| < 8,(z). The major function U is defined analogously.
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«vus Tpy 0} € A(S) is given. The properties of a subdivision from A(S) as well as those
of a major and minor function guarantee the inequality

N[oy-15 2;]) < f(7)) (9(2) — 9(2-1)) < U([oj-1, 2])

forany j = 1, 2, ..., k. Hence the additivity of U and V implies
k
V([a, b]) éjglf(n) (9(2;) = 9(;-1)) = K(4) = U([a, b]) -

From (2,8) we obtain in this way the inequality |K(4,) — K(4,)| < eforall 4, 4, €
€ A(S) which means that by Prop. 2,1 the integral K [} f dg exists. Considering that
P (2 fdg = inf U([a, b]) = sup V([a, b]) we have evidently also K [?fdg =
=P [tfdg. Y 4

2. Now we suppose that K u’ f dg exists. Let an arbitrary ¢ > 0be given. According
to Prop. 2,1 we choose a set S € & (characterized by é : [a, b] — (0, + 0)) such that

(29) [K(4r) - K(45)] <e
for all 4,, 4, € A(S).

For a given 7, a < v £ b let 4, be a subdivision of .[a, 7] subordinate to S(A4, €

€ A(S, ), A(S, 7) is the set of all subdivisions of [a, r] subordinated to S). Let us
define

M(t) = sup K(4,), m(x) = inf K(4,),
M(a) = m(a) = 0. We put U([c, d]) = M(d) — M(c), V([c, d]) = m(d) — m(c) for
[¢, d] = [a, b]. Hence by definition and by (2,9) we have
(2,10) 0 < U([a, b]) — V([a, b]) = M(b) — m(b) < &.

U is a major function of f with respect to G: Let 6 : [a, b] — (0, + o) be the function
which characterizes the set S. For fixed t€[a, b] let [c,d] = [a, b], € [c, d],
|d = ¢| < &(z). Then by definition

f(2) G([c, d]) + M(c) = f(z) (9(d) — g(c)) + M(c) = M(d),
ie.
f(2) 6([c, d]) = M(d) — M(c) = U([c, d]) -
In a similar way it can be proved that V is a minor function of f with respect to G
in [a, b].

The existence of the Perron-Stieltjes integral P [? f dg follows immediately from
(2,10). '

Definition 2,2. Let g : [a, b] — R be given. A point t € [a, b] is called a point of
variability of the function g if to every ¢ > 0 there is a t' € [a, b], It - t’| <eg
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such that g(t) + g(t'). The set of all points of variability of g in [a, b] is denoted
by V, while C, = [a, b] — V.
It is easy to prove that the set V, is closed in [a, b].

Proposition 2,2. Let fy, f,, g : [a, b] = R, fi(t) = f,(t) for teV, and let K [%f, dg
exist. Then K |2 f, dg exists and equals K % f, dg.

Proof. For every 1€ C, = [a, b] — V, there is by definition a §(r) > 0 such that
for all 7’ € [a, b], |t — 7’| < §(r) we have g(r) = g(r'). Since K [} f, dg exists, we
can choose to every ¢ > 0 a set Se & (characterized by a function & : [a, b] —
— (0, + o0)) such that

(1) 25 () — o(er-0) = K [ 7190] <

for any A4 = {0, 74, &y, ..., T, &} = A(S). We define 6*(zr) = §(7) for t€V, and
5*(7) = min (6(r), §(r)[2) for te C,; evidently 6*(z) < &(z) for all € [a, b] and
S* c Sif S* e & is the set in R? characterized by the function 6* : [a, b] — (0, + o).
Let further 4 € A(S*), then also 4 € A(S) and (2,11) holds for any 4 = {a,, 7y, @y, ...
eoor Tio 04} € A(S¥). If ;€ C, then we have from (2,3) that |t — 7)| < 6%(z)) <
< 68(t;)[2 < 8(z;) for all te[ao;_y, a;] and therefore g(o;) — g(a;—;) = 0. Hence
for all 4 = {0, 74, &y, ..., Tp» %} € A(S) we have by assumption

B (o) = a1-0) = :5) (o) - o(01-0)
and by (2,11) also

L)) - oes-1) ~ K [ Fudg] <

for any A € A(S*). This completes the proof.

Proposition 2,3. Let g,geBV(a,b), I =1,2,... and limvar’(g, — g) = 0.

=

Further we assume that for f : [a, b] —» R it is |f(tf)] < M for all te [a, b] and that
K [®fdg, exists for all 1 = 1,2, ... Then also K [%f dg and the limit lim K [} f dg,
exist and the equality -

limKJ-bfdg, = Kwadg
holds. T ’

Proof. For every subdivision 4 = {ag, 7, 2y, ..., fk, .} we have evidently
(2.12) © |K(4) - K(4)| = M .varg (g — g))

where K(A4) is the Kurzweil sum for f and g,.
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Let ¢ > 0 be given. We choose I, such that var} (g, — g) < /4M for 1 > I,,.
(If M = 0 then the proposition is evidently valid.) Since K |} f dg, exists for all I we
can find for a given I > I, a set Se€ & such that for any 4,, A, € A(S) we have
|Ki(A4) — Ki(4,)| < ]2 (cf. Prop. 3,1). Hence
|K(4y) - K(4,)| < |K(4r) = Ki(4y)| + [Ki(41) = Ki(4,)| + |Kf(42) — K(4,)] <

S2Mvary(g;,—g) + g2 <e

forany A;, 4, € A(S)and K [} f dg exists by Prop. 2,1. The other part of the proposi-
tion is a consequence of the inequality (2,12).

Corollary 2,1. If g, BV(a, b) is a pure break function and f:[a, b] - R is
bounded then K |[? f dg, exists and we have K [3fdg, = Y. f(t) Agy(t).
3]

tel[a,

Proof. Similarly as in the proof of Corollary 1,2 it is sufficient to prove that
K j‘: f dg exists for any pure break function g € BV(a, b) which is discontinuous at

the points of a finite set {1y, t,, ..., t,} < [a, b] and that K [2fdg = Y f(t;) Ag(t;).
i=1

Let us suppose thata < t; < t, < ...t, < b and let us define

8(7) = %e(r. {a, 11, ..., 1,, b})

forte (a, b),t + t;,i =1,..., v, where g is the Euclidean distance; further we define

A;= max 6(r), j=1,..,v—1

te(ty,ty+1)

and A, = max 6(t), A, = max §(7) if @ < t,, t, < b, respectively and we set 8(a) =
te(a,ty) te(ty,b)
=6(t)) =8(b) =A,j=1,...,v, where A = min (A;). In this way we have defined
J
a function & : [a, b] — (0, + o) which provides a set S defined by (2,1).
Let now A = {o, 7y, 0y, ..., Ty %} € A(S). By definition we have [«;_y, o;] =
< [t; — 8(t)), t; + 6(r;)] forany j = 1, ..., k and the following assertions are valid:

1)if 7;e{a ty,....,t,b} then |o; —o;_4| £26(r;) =2A and [o;_y, 0] N
n{a ty,..,t,b} =1,

2) if 7; ¢ {a, ty, ..., t,, b} then |a; — o;_,| < 25(;) = 4e(7;, {a, ty, ..., 1, b}) and
therefore [a;_, o] N {a, ty, ..., 1, b} = 0.
Hence {a, ty, ..., t,, b} = {1y, ..., 7,} and

K(A) = £1(5) o) — 0(51-3) = 10 oa+) - o) +
+ A (@0+) = o(t=) + 18) 0(8) - 9(6-)) = 210 Aa(e)



for any 4 € A(S), i.e. K [?f dg exists and equals ). f(¢;) Ag(t;). This proves the corol-
lary. =1

Proposition 2,4. Let T < (a, b) be given such that [a, b] — T is dense in [a, b]

(i.e. [a, b] — T = [a, b]) and let g(t) = O for te [a, b] — T. If K [} f dg exists then
necessarily K [°fdg = 0.

* Proof. For any §: [a, b] - (0, + 00) we choose from the system of intervals
(v = 8(2), T + &(7)), T € [a, b] a finite s::‘stem (r; = 8(ty), 7; k+ ér))=Jpi=1,..

..., k such that t; < t;,q, [a, b] C;Uf,j and [a, b] -—leJ,- + @ for any r =

*r
=1,...,k. Hence J;n J;;; + 0 is an interval for all jj= 1,...,k — 1 and the
density of [a, b] — T implies that there is an a; e (J; N J;4,) n([a, b] — T) for
j=1,...,k — 1 If we set ag = a, oy = b, then we evidently obtain a subdivision
A = {ag, 71, %y, ..., Ty, %} € A(S), where S is determined by 6 (cf. (2,1)) and g(a;) = 0
fori =0,1,..., k. Hence we have K(A4) = 0 for this subdivision 4 and our proposi-
tion follows immediately from Def. 2,1.

Example 2,1 (due to I. Vrkog). Let g(1/(I + 1)) =27 1=1,2,...,4(t) = 0 for
te[0,1] — {1/(I + 1)};2,. Evidently ge BV(a, b). Let us put f(1/(l + 1)) = 2,
f(f) = 0 for te[0,1] — {1/(1 + 1)};2,. We show that the integral K [3 f dg does
not exist. For an arbitrary & : [0, 1] — (0, + oo) we set = 7 = 0. Since 1/(I + 1) -
— 0 for [ - oo, in (0, (0)) there exists a point of the form 1/(I, + 1). We set further
ay = 14 = 1/(I, + 1) and choose points a,,..., % and 7,...., 7, such that 4 =
= {ag, T4, Ay, -, Tp %} € A(S) where S is the set given by 6 (cf. (2,1)) and g(a)) = 0
forj=2,..., k.

This choice of 4 € A(S) yields

K(4) = 1(5) (6) - 9(65-1) = 12) o(e) =

= (1o + 1) g(1/(lo + 1) = f(1](% + 1) g(1[(fo + 1)) = 1

for any & : [0, 1] - (0, + o). Hence the integral K |2 f dg cannot exist. Indeed, if it
existed, its value would be zero by Prop. 2,4 the set T = {1/(I + 1)};2 having all
properties required in Prop. 2,4. However, for any S we have constructed an 4 € A(S)
such that K(4) = 1 and Definition 2,1 yields a contradiction with the existence
of K [3fdg. -

The set T = {1/(I + 1)};2; =V, is the set of all points of variability of g. The
function g is evidently of bounded variation in [0, 1] (g € BV(0, 1)). By Prop. 2,2 the
integral K [? f dg does not exist for g given above and for any arbitrary function f
satisfying f(1/(! + 1)) = 27, f: [0, 1] € R (e.g. for the function from Example 1,1).
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In this way functions g € BV(0, 1) are constructed such that the Young integral
Y [3 f dg exists but the Kurzweil integral K {3 f dg does not.

-

b b
3. COMPARISON OF YJ. fdg AND KI fdg FOR g € BV(a, b)

a a

In this section we assume that g € BV(a, b), f:[a, b] > R and Y [ f dg existsg
The aim of our study is to find additional properties of f and g guaranteeing the exis-
tence of the integral K [ f dg.

For the function g € BV(a, b) let us denote by Ny < (a, b) the set of all points
te(a, b) of discontinuity of the function g for which g(t—) = g(t+), i.e.

Ns = {te(a, b); g(t=) = g(t+), g(t) + g(t—)}

and let us define gg(t) = g(t) — g(t—) for teNg, gs(t) = 0 for te[a, b] — Ng;
we have evidently gse BV(a, b) because varsgs =2 Y (g(t) — g(t—)) < vars g.
teNs

In Prop. 1,1 we have proved that Y [?f dgs exists for any function f: [a, b] > R
andY [l fdgs = 0.

We denote further gg = g — gs; evidently gg € BV(a, b) and if gg(t+) = gg(t—)
then gg(t) = gg(t—), i.e. gg is continuous at all points of continuity of g as well as
for all t € Ng.

Since Y [ f dg, exists by the assumption, the integral Y (2 f dg exists as well and
equals Y [2fdg — Y [2fdgs = Y [? f dg. Using the existence of Y [} f dgx we obtain
from Theorem 1,2 that f is bounded on a finite number of closed intervals which are
complementary to a finite number of open intervals on which the function gy is
constant. It is possible to assume that |f(f)] < M for all t € [a, b]; in the opposite
case we set f = f on the set on which f is bounded and f = 0 otherwise. By Corollary
1,1 the existence of Y [ f dgp is equivalent to the existence of Y [ f dgx and we have
Y.’.:fdGR = Y.[:fdgx- ’

Now we uset the usual decomposition gg = g. + gg, Of gg € BV(a, b) into the
continuous part g, and a pure break function gg,. Corollary 1,2 guarantees the exis-
tence of Y [ f dgg, and so we obtain also the existence of Y [? f dg,. Moreover, we
have

Y f Fdgm = 3 1) ani) = 3 £(1) Ag().-
~ te[a,b] te[a,b]

Since g, € BV(a, b) is continuous the norm integral NY [? f dg, exists by Theorem 1,5
and by Theorem 1,4 also the Riemann-Stieltjes norm integral NR [} fdg, exists.
From Remark 2,2 the existence of K [ f dg, and the equality K [®fdg, = Y [2f dg.
immediately follows. Further, Corollary 2,1 implies the existence of K [7f dggs
since the function f is bounded, and also the equality K [fdgg, = Y [2f dggs.
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